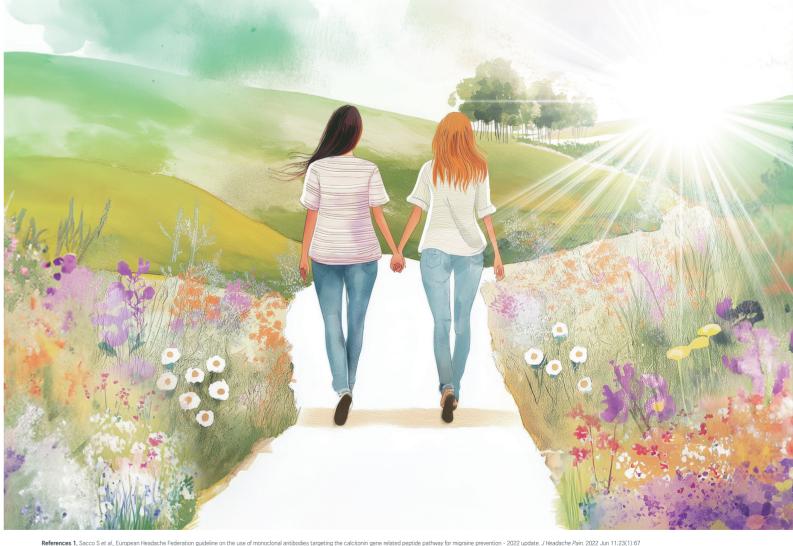


Headache and Pain Research

Open Access I pISSN 3022-9057 I eISSN 3022-4764

More migraine-free days with only 4 injection days per year^{1,2}


약품통합정보시스템 (http:\\nedrug.mfds.go.kr) 아조비 제품정보 **2.** Goadsby PJ*, et al. Neurology* 2020;95:e2487-2499

적절한 편두통 관리의 시작

앰겔러티[®] 투여를 통해 편두통을 적절히 관리할 수 있습니다.¹

Headache and Pain Research

pISSN 3022-9057 eISSN 3022-4764

Vol. 26 No. 3, October 2025

Aims and scope

Headache and Pain Research (Headache Pain Res; pISSN: 3022-9057, eISSN: 3022-4764) publishes original articles, review articles, and short letters on all aspects of Headache and Pain Research. The main topics include migraine, cluster headache, tension-type headache, intracranial hypotension, intracranial hypertension, reversible cerebral vasoconstriction syndrome, other primary or secondary headache disorders, pediatric headache, and issues related headache and pain such as dizziness, psychological, and cognitive problems, and *Temporomadibular disorder and orofaical pain*. Headache and Pain Research, the official journal of Korean Headache Society, aims to rapidly spread updated advances in the headache and pain field to readers and patients, while fostering a scientifically fair and progressive relationship with researchers and reviewers. It aims to be an international journal and welcomes outstanding editorial board members and submissions from all over the world.

Headache and Pain Research is published 3 times a year (February, June, and October) since 2025. Until 2024, HPR was published biannually (the last day of June and Decomber) from 2000 to 2024.

This journal was first published in 2000 under the title 'Korean Journal of Headache' (ISSN 1598-009X) and its title has been changed to 'Headache and Pain Research' since 2024.

Open access

Headache and Pain Research is an Open Access journal distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Publisher

The Korean Headache Society

Editor-in-Chief

Soo-Jin Cho, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 7 Keunjaebong-gil, Hwaseong18450, Republic of Korea

Editorial office

Department of Neurology, Nowon Eulji Medical Center, Eulji University School of Medicine, 68 Hangeulbiseok-ro, Nowon-gu, Seoul 01830, Republic of Korea

Tel: +82-2-974-8606 E-mail: office@e-hpr.org

Printing office

M2PI

#805, 26 Sangwon 1-qil, Seongdong-qu, Seoul 04779, Korea

Tel: +82-2-6966-4930 Fax: +82-2-6966-4945 E-mail: support@m2-pi.com

Published on October 31, 2025

^{© 2025} The Korean Headache Society

[@] This paper meets the requirements of KS X ISO 9706, ISO 9706-1994 and ANSI/NISO Z39. 48-1992 (Permanence of paper)

Editorial board

Editor-in-Chief

Soo-Jin Cho

Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Korea

Deputy Editor

Soo-Kyoung Kim

Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Korea

International Editors

Sait Ashina

Harvard Medical School, Beth Israel Deaconess Medical Center, United States

Andrea Carmine Belin

Karolinska Institutet, Sweden

Shin-Pin Chen

Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taiwan

Gianluca Coppola

Sapienza University of Rome, Italy

Amr Hassan

Faculty of Medicine, Cairo University, Cairo, Egypt

Otgonbayar Luvsannorov

Mongolian National University of Medical Science, Mongolia

Lanfranco Pellesi

University of Southern Denmark, Odense, Denmark

Francesca Puledda

King's College London, Great Britain

Mamoru Shibata

Tokyo Dental College Ichikawa General Hospital, Japan

Tsubasa Takizawa

Keio University School of Medicine, Japan

Yonggang Wang

Beijing Tiantan Hospital, Capital Medical University. National Nerve System Disease Research Centre, China

Statistics Editor

Junhee Han

Hallym University, Chuncheon, Korea

SungHyo Seo

Gyeongsang National University Hospital, Korea

Associate Editors

Migraine

Kyungmi Oh

Korea University College of Medicine, Korea University Guro Hospital, Korea

Trigeminal autonomic cephalalgia

Chin-Sang Chung

Dr. Chung's Neurology Clinic, Korea

Psychiatry/psychology/cognition/sleep

Sung-Pa Park

Kyungpook National University Hospital, Korea

Pediatric headache

Yun Jin Lee

Pusan National University Children's Hospital (Pusan National University Yangsan Hospital), Korea

Temporomadibular disorder and orofaical pain

Ji-Won Ryu

Chosun University Dental Hospital, Korea

Epidemiology/Big data

KwangYeol Park

Chung-Ang University Hospital, Chung-Ang University School of Medicine, Korea

Secondary headache

Miji Lee

Seoul National University Hospital, Korea

Editorial board

Editorial Board

Mi-Kyoung Kang

Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Korea

Hye Eun Kwon

International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Korea

English Editor

Sanghyo Ryu

Dr. Ryu's Neurology Clinic, Korea

Ethical Editor

Jaemyun Chung

Department of Neurology, H+ Yangji Hospital, Korea

Junior Editors

Keiko Ihara

Keio University School of Medicine, Japan

Ryotaro Ishii

Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan

Yu-Hsiang Ling

Neurological Institute, Taipei Veterans General Hospital, Taiwan

Manuscript Editor

Hyun Jung Kwon

Freelancer, Korea

Layout Editor

Eun Mi Jeong

M2PI, Korea

Website and JATS XML File Producer

Min Young Choi

M2PI, Korea

Contents

Vol. 26, No. 3, October 2025

Editorial

171 Toward Precision Migraine Care: Genetics, Symptoms, and Big-Data-Driven Approaches

Soo-Jin Cho

Review Articles

173 A Practical Approach to Headache in Moyamoya Disease

Mi-Yeon Eun, Jin-Man Jung, Jay Chol Choi

184 Gepants for Migraine: An Update on Long-Term Outcomes and Safety Profiles

Soohyun Cho, Kimoon Chang

193 Headache as a Somatic Symptom in Pediatrics: Diagnosis and Integrated Management

Hye Eun Kwon

200 Interictal Burden of Migraine: A Narrative Review

Soo-Kyoung Kim, Todd J. Schwedt

209 The Hidden Risks of Medication Underuse in Migraine Progression

Heui-Soo Moon, Pil-Wook Chung

Original Article

218 Trigeminal Autonomic Cephalalgias Following Unilateral Dorsolateral Medullary Infarction: A Case Series and Literature Review

Jae-Myung Kim, Hak-Loh Lee, You-Ri Kang, Joon-Tae Kim, Seung-Han Lee

Case Report

226 Isolated Dental and Lower-Facial Pain Mimicking Trigeminal Neuropathy: An Indirect Carotid-Cavernous Fistula

Byoungchul Choi, Chulho Kim, Sung-Hwan Kim, Jong-Hee Sohn

Correction

232 Erratum to "Premonitory Symptoms in Migraine: Implications for Disease Burden and Cognitive Impairment, with Some Promising Answers"

Utku Topbaş, Bahar Taşdelen, Nevra Öksüz Gürlen, Aynur Özge

Editorial

Headache Pain Res 2025;26(3):171-172 pISSN: 3022-9057 • eISSN: 3022-4764 https://doi.org/10.62087/hpr.2025.0017

Headache and Pain Research

Toward Precision Migraine Care: Genetics, Symptoms, and Big-Data-Driven Approaches

Soo-Jin Cho

Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea

Migraine is an extremely common disease affecting approximately one billion people worldwide. Migraine-specific preventive treatments such as calcitonin gene-related peptide (CGRP) monoclonal antibodies, CGRP receptor antagonists, and the established botulinum toxin A therapy are now given higher priority than conventional treatments. However, delays in diagnosis and treatment remain substantial. A deeper understanding of migraine is essential to improving patients' quality of life. The latest issue features in-depth research addressing multiple aspects of migraine.

One notable article is the systematic review "Genetic architecture of migraine: from broad insights to East Asian perspectives" by Kim and Chu.² According to this study, the estimated heritability of migraine ranges from 30% to 60%. This spectrum includes rare monogenic forms (*CACNA1A*, *ATP1A2*, *SCN1A*, *PRRT2*, *NOTCH3*, and *GLUT1*) as well as common polygenic migraine. Up to 181 migraine loci have been identified through genome-wide association studies. The molecular mechanisms underlying migraine pathogenesis may differ among ancestries. Genetic factors play a crucial role in migraine development, comparable in significance to hormonal influences.

As the saying goes, "if you don't suspect it, you won't find it." Therefore, recognizing migraine-associated symptoms is essential, particularly when evaluating patients presenting with dizziness. A narrative review of vestibular migraine estimated its annual prevalence at 1%–3%.³ For acute management, triptans may be considered in selected cases of vestibular migraine despite previous failed trials. A systematic review found valproic acid and flunarizine to be effective, while CGRP monoclonal antibodies have shown promising results in certain trials.

Additionally, what about prodromal symptoms? One study reported that 74.7% of migraineurs experienced at least one premonitory symptom. The most common were neck stiffness, followed by photophobia, fatigue, and phonophobia. These symptoms were often associated with cognitive impairment.

What further steps are needed for big data-based migraine research in the AI era to achieve valid conclusions? The article "Validity of migraine diagnoses in Korean National Health Insurance claims data" illustrates this potential. A retrospective review of the electronic medical records of 500 patients revealed that the positive predictive value (PPV) for a single claim was 74%. Accuracy increased markedly with three or more claims (PPV: 81.14%), particularly when combined with medication prescriptions (PPV: 94.96%; specificity: 85.37%).⁵

Precision medicine, incorporating machine learning and big data, may enable the prediction of individual treatment responses. For instance, beta blockers may be more effective in thin patients, whereas topiramate may be more effective in overweight individuals.⁶ A multifaceted,

Received: September 13, 2025; Revised: September 25, 2025; Accepted: October 2, 2025

Correspondence: Soo-Jin Cho, M.D., Ph.D.

Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 7 Keunjaebong-gil, Hwaseong 18450, Republic of Korea

Tel: +82-31-8086-2310, Fax: +82-31-8086-2317, E-mail: dowonc@naver.com

© 2025 The Korean Headache Society

®This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

patient-tailored approach to migraine research, as emphasized in *Headache and Pain Research*, may open new horizons for both clinicians and investigators.

AVAILABILITY OF DATA AND MATERIAL

The data presented in this study are available upon reasonable request from the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization: SJC; Writing-original draft: SJC; Writing-review & editing: SJC.

CONFLICT OF INTEREST

Soo-Jin Cho is the Editor-in-Chief of *Headache and Pain Research* and was not involved in the review process of this article. The author has no other conflicts of interest to declare.

FUNDING STATEMENT

Not applicable.

ACKNOWLEDGMENTS

Not applicable.

REFERENCES

- 1. Ornello R, Caponnetto V, Ahmed F, et al. Evidence-based guidelines for the pharmacological treatment of migraine. Cephalalgia 2025;45:3331024241305381.
- **2.** Kim J, Chu MK. Genetic architecture of migraine: from broad insights to East Asian perspectives. Headache Pain Res 2025; 26:116-129.
- **3.** Kim BK. Vestibular migraine: challenges in diagnosis and management. Headache Pain Res 2025;26:106-115.
- 4. Topbaş U, Taşdelen B, Gürlen NÖ, Özge A. Premonitory symptoms in migraine: implications for disease burden and vognitive impairment, with some promising answers. Headache Pain Res 2025;26:130-141.
- Chang Y, Choi S, Kim BS, Song TJ. Validity of migraine diagnoses in Korean National Health Insurance claims data. Headache Pain Res 2025;26:154-161.
- **6.** Chiang CC, Schwedt TJ, Dumkrieger G, et al. Advancing toward precision migraine treatment: predicting responses to preventive medications with machine learning models based on patient and migraine features. Headache 2024;64:1094-1108.

Review Article

Headache Pain Res 2025;26(3):173-183 pISSN: 3022-9057 • eISSN: 3022-4764 https://doi.org/10.62087/hpr.2025.0011

A Practical Approach to Headache in Moyamoya Disease

Mi-Yeon Eun^{1,2}, Jin-Man Jung³, Jay Chol Choi⁴

Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder of the intracranial internal carotid arteries characterized by fragile collateral vessel formation. Although ischemic and hemorrhagic strokes are the most widely recognized manifestations of MMD, headaches are common, often disabling, and remain underacknowledged. Epidemiological studies report headache in 17%-85% of MMD patients, with particularly high rates among pediatric patients. Clinically, headache phenotypes are diverse and include migraine-like headaches with or without aura, tension-type, cluster, and hemiplegic variants. These presentations often overlap with primary headache disorders, complicating the diagnosis and sometimes delaying the recognition of underlying MMD. The pathophysiology of MMD-related headaches is multifactorial, involving vascular stenosis, abnormal collateral circulation, altered hemodynamics, and neurogenic inflammation. Chronic hypoperfusion may lower the threshold for cortical spreading depression, contributing to migraine-like or aura-associated symptoms. Surgical revascularization has been reported to alleviate headaches in both pediatric and adult patients, but persistent or new headaches may occur postoperatively, and long-term outcomes remain inconsistent. Management often involves general analgesics such as acetaminophen and non-steroidal anti-inflammatory drugs, but vasoconstrictive agents (e.g., triptans and ergotamines) should be avoided. Lasmiditan, a non-vasoconstrictive 5-HT1F agonist, may represent a safer option for acute treatment, while the efficacy of other pharmacological agents remains unclear due to limited evidence. In conclusion, headaches in MMD are not only a frequent source of disability but also a potential clinical marker of disease activity. Wider recognition of their epidemiology, phenotypes, and mechanisms may improve the diagnosis, guide individualized treatment, and ultimately enhance quality of life for patients.

Keywords: Cerebral revascularization, Headache, Migraine disorders, Moyamoya disease

INTRODUCTION

Moyamoya disease (MMD) is a rare, progressive cerebrovascular condition characterized by chronic stenosis or occlusion of the intracranial internal carotid arteries and the subsequent development of compensatory collateral vessels, creating a distinctive "puff of smoke" appearance on angiography. Recent advances in genetics have shed new light on the pathogenesis of MMD. The *RNF213* gene, particularly the p.R4810K variant, has been identified as

Received: July 17, 2025; Revised: September 1, 2025; Accepted: September 17, 2025

Correspondence: Jay Chol Choi, M.D., Ph.D.

Department of Neurology, Jeju National University College of Medicine, 15 Aran 13-gil, Jeju 63241, Republic of Korea Tel: +82-64-754-8160, Fax: +82-64-717-1131, E-mail: jaychoi@jejunu.ac.kr

© 2025 The Korean Headache Society

®This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea

²Department of Neurology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea

³Department of Neurology, Korea University Ansan Hospital, Ansan, Republic of Korea

⁴Department of Neurology, Jeju National University Hospital, Jeju National University College of Medicine, Jeju, Republic of Korea

the major susceptibility gene in East Asian populations, with carriers showing a markedly increased risk of MMD development.² This variant is thought to affect vascular remodeling and angiogenesis, thereby predisposing to steno-occlusive changes of the intracranial arteries. In addition to RNF213, other genes such as GUCY1A3 and ACTA2 have been implicated in Movamova syndromes. Variants in GUCY1A3, which encodes a subunit of soluble guanylate cyclase, have been reported in families with Moyamoya angiopathy, while ACTA2 variants, associated with vascular smooth muscle dysfunction, have been described in syndromic cases with aortic disease and cerebral arteriopathy.3,4 Together, these discoveries not only enhance our understanding of disease mechanisms but may also inform diagnostic strategies, risk stratification, and future targeted therapies.

The clinical manifestations of MMD are diverse, with ischemic strokes and transient ischemic attacks (TIAs) being the most recognized symptoms. However, headaches represent a significant and often overlooked aspect of MMD and they can present with a wide spectrum of phenotypes, including migraine (with or without aura), tension-type headaches, and cluster headaches. ^{5,6}

These headaches frequently mimic primary headache disorders, complicating diagnosis and potentially delaying timely intervention. Beyond their symptomatic burden, headaches in MMD may signify underlying cerebral hypoperfusion or hemodynamic instability, underscoring their clinical importance. The pathophysiology of headaches in MMD involves complex interactions between vascular stenosis, neurogenic inflammation, and altered hemodynamics, which contribute to the diverse headache presentations observed in MMD.^{5,6} This review aims to provide a comprehensive understanding of headaches in MMD by synthesizing current knowledge on their epidemiology, clinical characteristics, pathophysiology, and management strategies. By doing so, it seeks to offer practical insights for optimizing diagnosis and treatment, ultimately improving outcomes for patients with MMD.

EPIDEMIOLOGY OF HEADACHES IN MOYAMOYA DISEASE

Headaches constitute a prevalent yet frequently overlooked manifestation among individuals diagnosed with MMD. This narrative review synthesizes current evidence on headaches in MMD based on literature retrieved from major databases including PubMed and EMBASE. For epidemiological data (Table 1),7-27 we included observational studies with sufficient sample size and clinical detail, while for clinical characteristics (Table 2), 5,28-37 representative case reports and case series were selected to illustrate the diversity of headache manifestations in MMD. A review of multiple observational studies indicates that the reported incidence of headache among patients with MMD ranges from 17% to 85%, with most studies documenting prevalence rates between 30% and 60%. The substantial variability of headache prevalence is likely attributable to disparities in the demographic characteristics of study cohorts, research methodologies, and the diagnostic criteria utilized in various investigations (Table 1).

Although MMD shows a markedly higher prevalence in East Asian populations compared with Western cohorts, headache manifestations appear to be less strongly influenced by ethnicity. In Japan, reported headache prevalence ranges from 21% to 85%, 7,10,12-15 whereas studies from Korea indicate prevalence rates between 22% and 38%. 8,9,16 In American and European populations, the occurrence is lower than in Asian groups; however, headaches remain a notable symptom, particularly among pediatric patients (17% to 67%). 11,17-20

MMD demonstrates a bimodal age distribution, with incidence peaks during childhood (the first decade of life) and adulthood (around 40 years). Headache is a frequently reported symptom across all age groups, though its prevalence and clinical significance may vary by age. In pediatric patients, headache is often the second most frequent symptom after motor deficits, 9,13 with prevalence ranging from 22% to 85% depending on study design, diagnostic criteria, and surgical status. 7-9,13,14,19,20 In adults, reported headache prevalence ranges from 17% to 67%. 11,15,17,21 While headache has been considered somewhat more common in pediatric MMD than in adults, the evidence for this remains mixed and inconsistent. Several factors may influence these reported differences, including variations in study methodology, differences in headache assessment and definition, and potential age-related differences in symptom reporting. Additionally, the higher frequency of revascularization surgery in pediatric populations may contribute to postoperative headaches, poten-

Table 1. Epidemiology and characteristics of headache associated with Moyamoya disease

Author (year) County Study cleege												
Japan Retrospective 81 10.4 Pediatric 22 (27.2) N/A N/A	Author (year)	Country	Study design	Total patients (n)	Age (yr)	Study population	Headache, n (%)	Migraine, n (%)	Migraine with aura, n (%)	Tension- type, n (%)	Other headache type, n (%)	Headache severity
Korea Retrospective 38 6.3.36.8¹ Both 10 (26.3) N/A N/A N/A N/A Korea Retrospective 204 7 Pediatric 414 (21.6) N/A N/A N/A N/A N/A Liapan Retrospective 410 7.3 Pediatric 414 (21.6) N/A N/A N/A N/A N/A Japan Retrospective 410 7.3 Pediatric 11 (37.9) N/A N/A N/A N/A N/A Japan Retrospective 29 10 Pediatric 28 (51.3) 6 (21.4) 1 (167.% N/A N/A N/A N/A Japan Retrospective 56 37.6 Adulit 37 (65.3) 1 (167.% N/A N/A N/A N/A Japan Retrospective 56 37.6 Adulit 37 (65.8) N/A	Matsushima et al. (1990) ¹³	Japan	Retrospective	81	10.4	Pediatric	22 (27.2)	N/A	N/A	N/A	N/A	N/A
Hally Retrospective 34 135 Both 7 (20.6) 7 (10.0) N/A 0 0	Yu et al. (1991) ¹⁶	Korea	Retrospective	38	$6.3, 36.8^{\dagger}$		10 (26.3)	N/A	A/N	N/A	N/A	N/A
Korea Retrospective 204 7 Pediatric 44 (21.6) N/A N/A <td>Battistella and Carollo (1997)²⁴</td> <td>Italy</td> <td>Retrospective</td> <td>34</td> <td>13.5</td> <td>Both</td> <td>7 (20.6)</td> <td>7 (100)</td> <td>N/A</td> <td>0</td> <td>0</td> <td>N/A</td>	Battistella and Carollo (1997) ²⁴	Italy	Retrospective	34	13.5	Both	7 (20.6)	7 (100)	N/A	0	0	N/A
Korea Retrospective 410 7.3 Pediatric 134 (32.7) N/A N/A	Seol et al. $(2005)^8$	Korea	Retrospective	204	7	Pediatric	44 (21.6)	N/A	N/A	N/A	Morning HA 14 (31.8)	N/A
1 Japan Retrospective of etrospective	Kim et al. (2010) ⁹		Retrospective	410	7.3	Pediatric	134 (32.7)	N/A	N/A	N/A	N/A	Severe headache
Japan Retrospective 941 N/A Both 56 (6.0) N/A N/A	Okada et al. (2012) ¹²		Retrospective	117	33	Both	25 (21.4)	A A	N/A	N/A	N/A	Grade 1* 4 (16.0), Grade 2 13 (52.0), Grade 3 8/25 (32.0)
Japan Retrospective 29 10 Pediatric 28 (51.9) 6 (21.4) 1 (16.7%, N/A	Hoshino et al. (2012) ²⁵	Japan	Retrospective	941	N/A	Both	56 (6.0)	N/A	N/A	N/A	N/A	A/A
USA Retrospective 54 7.5 Pediatric 28 (51.9) 6 (21.4) 1 (16.7%, N/A	Kawabori et al. $(2013)^{10}$	Japan	Retrospective	29	10	Pediatric	11 (37.9)	N/A	N/A	N/A	N/A	Severe
Japan Retrospective 10 8 Rediatric 8 (80.0) N/A N/	Amlie-Lefond and Ellenbogen $(2015)^2$		Retrospective	54	7.5	Pediatric	28 (51.9)	6 (21.4)	1 (16.7%, hemiplegic migraine)	N/A	N/A	N/A
Germany Retrospective 55 37.6 Adult 37 (67.3) 17 (45.9) 10 (27.0) Mixed 10 (27.0) Mi	Bohara et al. $(2015)^{\perp}$	Japan	Retrospective	10	œ	Pediatric	8 (80.0)	N/A	N/A	N/A	N/A	N/A
UK Retrospective 88 5.1 Pediatric 50 (56.8) N/A N/A N/A N/A N/A N/A J ¹⁵ Japan Retrospective 68 49.8 Adult 33 (48.5) N/A N/A N/A N/A N/A N/A China Retrospective 76 21.2 Both 28 (36.8) N/A N/A N/A N/A N/A India Retrospective 35 10.5 Pediatric 29/34 (85.3) N/A N/A N/A N/A N/A India Retrospective 6 23.7 Both 3(50.0) N/A N/A N/A N/A USA Retrospective 6 23.7 Both 3(50.0) N/A N/A N/A N/A Greece Prospective 12 43.5 Adult 2(16.7) N/A N/A N/A N/A Greece Prospective 12 43.5 Adult 2(16.7) N/A	Kraemer et al. $(2017)^{17}$	Germany	Retrospective	22	37.6	Adult	37 (67.3)	17 (45.9)	10 (27.0)	10 (27.0)	Mixed 10 (27.0; migraine+TTHA)	NRS mean 3.2±1.3
1st Japan Retrospective 68 49.8 Adult 33 (48.5) N/A N/A<	Tho-Calvi et al. (2018) ¹⁹	N X	Retrospective	88	5.1	Pediatric	50 (56.8)	N/A	N/A	N/A	N/A	A/A
China Retrospective 119 34.4 Both 119 (100) 46 (38.7) 34 (73.9) 29 (24.4) Mixed 44 (37.0; anigraine+TTHA) S migraine+TTHA) India Retrospective 76 21.2 Both 28 (36.8) N/A N/A N/A N/A N/A India Retrospective 35 10.5 Pediatric 29/34 (85.3) N/A N/A N/A N/A N/A India Retrospective 6 23.7 Both 3(50.0) N/A N/A N/A N/A USA Retrospective 769 32 Both 354 (46.0) N/A N/A N/A N/A Greece Prospective 12 43.5 Adult 2 (16.7) N/A N/A N/A N/A Canada Retrospective 59 47 Adult 41 (69.5) N/A N/A N/A N/A	Katano et al. (2019) $^{\!\perp}$	Japan	Retrospective	89	49.8	Adult	33 (48.5)	A/A	N/A	N/A	N/A	Light 19 (57.6), moderate 12 (36.4), severe 3/33 (9.1)
India Retrospective 76 21.2 Both 28 (36.8) N/A	Gao et al. (2020) ²³	China	Retrospective		34.4	Both	119 (100)	46 (38.7)	34 (73.9)	29 (24.4)	Mixed 44 (37.0; migraine+TTHA)	Severe 67 (56.3), VAS 5.9
26 USA Retrospective 35 10.5 Pediatric 29/34 (85.3) N/A	Das et al. $(2020)^{22}$	India	Retrospective	9/	21.2	Both	28 (36.8)	N/A	N/A	N/A	N/A	N/A
26 USA Retrospective 12 42 Adult 4 (33.3) 4 (100) N/A N/A N/A India Retrospective 6 23.7 Both 3 (50.0) N/A N/A N/A N/A USA Retrospective 769 32 Both 354 (46.0) N/A N/A N/A N/A Greece Prospective 12 43.5 Adult 2 (16.7) N/A N/A N/A N/A Canada Retrospective 59 47 Adult 41 (69.5) N/A N/A N/A N/A	Aihara et al. $(2021)^{7}$	Japan	Retrospective	32	10.5	Pediatric	29/34 (85.3)	N/A	N/A	N/A	N/A	Moderate 9 (25.7), intractable 20 (57.1)
India Retrospective 6 23.7 Both 3(50.0) N/A N/A 2(33.3) N/A USA Retrospective 769 32 Both 354 (46.0) N/A N/A N/A N/A Greece Prospective 12 43.5 Adult 2 (16.7) N/A N/A N/A N/A Canada Retrospective 59 47 Adult 41 (69.5) N/A N/A N/A N/A	Sutton et al. $(2022)^{26}$		Retrospective	12	42	Adult	4 (33.3)	4 (100)	A/N	N/A	N/A	N/A
USA Retrospective 769 32 Both 354 (46.0) N/A N/A N/A N/A N/A Greece Prospective 12 43.5 Adult 2 (16.7) N/A N/A N/A N/A N/A Canada Retrospective 59 47 Adult 41 (69.5) N/A N/A N/A N/A	Das et al. (2022) ²⁷	India	Retrospective	9	23.7	Both	3 (50.0)	N/A	N/A	2 (33.3)	N/A	Mild to moderate
Greece Prospective 12 43.5 Adult 2 (16.7) N/A N/A N/A N/A Canada Retrospective 59 47 Adult 41 (69.5) N/A N/A N/A N/A	Teo et al. (2022) ¹⁸	NSA	Retrospective	692	32	Both	354 (46.0)	N/A	N/A	N/A	N/A	N/A
Canada Retrospective 59 47 Adult 41 (69.5) N/A N/A N/A N/A	Vassilopoulou et al. (2023)	Greece	Prospective	12	43.5	Adult	2 (16.7)	N/A	N/A	N/A	N/A	A/A
	Gallego Moyano et al. $(2024)^{21}$	Canada	Retrospective	29	47	Adult	41 (69.5)	N/A	N/A	N/A	N/A	VAS median 5

by A, not available, not night greated by 1117, tensor report readed by No. 1 and 12 and 2 and 1. Severe headache not requiring medication and/or rest; Grade 2, severe headache requiring medication (non-steroidal anti-inflammatory drugs and/or medication for migraine); and Grade 3, severe headache requiring medication and rest. ¹Mean age of pediatric and adult patients, respectively.

Table 2. Clinical characteristics and headache patterns in reported cases of MMD

		Age		Headache			Combined	Neurological	_	
Author (year)	Sex	(yr)	MMD	type	Location	Severity	symptoms	symptoms	Treatment	Outcome
Park-Matsu- moto et al. (1999) ³⁴	Female	49	Bilateral	Migraine with aura	N/A	Severe	N/A	Cerebral infarction	N/A	Gradually improved, no recurrence
Aydin et al. (2003) ³⁵	Female	4	Bilateral	Migraine	N/A	Severe	Nausea, vom- iting, photo- phobia	None	Nimodipine	Improved head- ache
Sewell et al. (2009) ²⁸	Male	34	Bilateral	Cluster headache	N/A	Severe	Rhinorrhea, lacrimation, ptosis	Left-sided RLS, left hand numbness	Revascular- ization	Improved after revascularization
Siddiqui et al. (2010) ²⁹	Female	10	Bilateral	Hemiplegic migraine	Left hemi- cranial	Moderate	Nausea, vom- iting, photo- phobia	Left hemiparesis	NSAIDs, propranolol, prochlor- perazine, nimodipine, aspirin	Gradually im- proved
Zach et al. (2010) ⁵	Female	39	Bilateral	Migraine without aura, ten- sion-type headache	Bilateral frontal	Moderate to severe	Photophobia, allodynia, nausea, light headedness	Tinnitus	NSAIDs, acet- aminophen	N/A
Verdure et al. (2012) ³¹	Female	13	Bilateral	Migraine without aura	N/A	N/A	N/A	TIA, left ACA territory infarc- tion	N/A	N/A
Vuignier et al. (2014) ³²	Female	4	Right	N/A	Right frontal	N/A	Vomiting	Ischemic stroke	Revascular- ization	Improved head- ache after revasculariza- tion
Lee et al. (2014) ³⁶	Female	12	Bilateral	N/A	Bitemporal	Severe	Eyeball pain	TIA, dysarthria, right hemipa- resis, numb- ness	NSAIDs, topiramate	Not effective
Diaz et al. (2014) ³⁷	Female	32	Left	Migraine	N/A	Intractable	Nausea, vomit- ing	N/A	Aspirin	N/A
Tozzi et al. (2015) ³⁰	Female	7	Bilateral	N/A	Frontal	N/A	N/A	Drop attacks, dysarthria, chorea, hemi- paresis	Revascular- ization	Improved head- ache intensity and frequency (1 time/wk)
Khan et al. (2025) ³³	Male	65	Right	N/A	Right-sided	Severe	N/A	Left-sided numbness	Aspirin	Improved

MMD, Moyamoya disease; N/A, not available; RLS, left-to-right shunt; NSAIDs, non-steroidal anti-inflammatory drugs; TIA, transient ischemic attack; ACA, anterior cerebral artery.

tially affecting prevalence estimates. Interestingly, when examining patients with similar surgical exposure, Teo et al. 18 reported comparable headache rates in children (43%) and adults (47%), while studies by Das et al. 22 and Yu et al. 16 found higher headache prevalence in adults within the same cohort. These findings highlight the complexity of age-related headache patterns in MMD and underscore the need for additional well-designed prospective studies that account for surgical status, disease stage, and the use of standardized headache assessment tools to better clarify the true relationship between age and headache manifestations in this disease.

Gender differences in headache prevalence among patients with MMD have been less extensively studied and remain inconclusive. While some studies reported a higher prevalence of headache in males compared to females, ^{10,12} Katano et al.¹⁵ found the opposite trend, with headaches more frequently reported in females (57%) than in males (32%). These conflicting results are noteworthy given the female predominance of MMD itself and the higher prevalence of primary headache disorders among females in the general population. Further investigation is needed to clarify these gender-specific patterns in MMD-associated headache.

Headache in MMD presents with three distinct temporal patterns: preceding MMD diagnosis, as an initial presenting symptom, and following diagnosis or revascularization surgery. Some patients experience recurrent headaches months to years prior to diagnosis, and the median interval from headache onset to MMD diagnosis is approximately 9.5 months (range, 0–192 months). As an initial symptom, headache is reported in 7% to 33% of patients, particularly in pediatric cases.^{9,13} Headache may also newly develop or persist after diagnosis, especially following revascularization surgery.^{8,9,17,21} Among patients with preoperative headaches, 64%-100% report improvement following surgery, whereas 6%-16% of those without prior headache experience new-onset headaches postoperatively. 8-10,14,17,19,21 In line with this, the International Classification of Headache Disorders, 3rd edition (ICHD-3), formally recognizes "Headache attributed to Moyamoya disease" (code 6.8.2). This category applies to patients with a new or significantly changed headache in close temporal relation to MMD onset or progression, with radiological confirmation of the disease. These temporal patterns underscore the need to consider MMD in the differential diagnosis of new or refractory headaches, especially in younger patients, and highlight the importance of clinical history and neuroimaging in guiding timely diagnosis and tailored management.

CHARACTERISTICS OF HEADACHE IN MOYAMOYA DISEASE

The clinical features of headache in MMD are diverse and often resemble those of primary headache syndromes, but arise from distinct cerebrovascular mechanisms. Migraine-like presentations are particularly common, with several large observational studies reporting migraine prevalence ranging from 39% to 48% among MMD patients with headache. A distinctive feature is the high prevalence of migrainous aura (27%–74%), with visual, sensory, motor, and speech disturbances reported. This is substantially higher than the 30% aura prevalence typically seen in primary migraine, suggesting that the underlying cerebrovascular pathology in MMD may facilitate cortical spreading depression and aura phenomena. Tension-type headaches affect approximately 25% of patients, while 8%–37% experience mixed headache patterns combining

both migraine and tension-type features. ^{17,23} Cluster headache has been documented in rare cases, typically in male patients. ²⁸ Hemiplegic migraine variants have also been reported in the literature, particularly in pediatric patients. ²⁹

The quality of pain in MMD-associated headaches varies widely. Case studies describe throbbing or pulsatile pain characteristic of migraine, as well as pressing or oppressive pain typical of tension-type headache (Table 2). ^{5,29,30} Occasionally, patients experience thunderclap headaches with sudden, severe onset, which may signal acute changes in cerebral hemodynamics or incipient ischemic events. ³¹

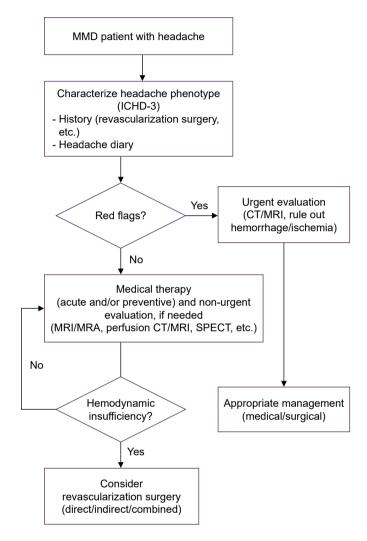
The severity of headaches in MMD generally tends toward the moderate-to-severe range in case series. Many observational studies that assessed headache prevalence used criteria emphasizing functional impairment, often classifying headaches as severe if they interfered with daily activities. For instance, Aihara et al. reported in a pediatric MMD cohort that 57% of patients experienced intractable headaches, while 26% reported moderate-intensity headaches, highlighting the significant burden of symptoms even in younger populations. These findings underscore the disabling nature of MMD-associated headache and its potential impact on quality of life, especially in cases resistant to conventional analgesic treatment.

The location of headache in MMD patients demonstrates considerable variability. Frontal and temporal regions are most commonly affected, with both unilateral and bilateral distributions frequently reported. ^{10,15,29,32} Importantly, headache laterality does not always consistently align with the side of vascular involvement, and the correspondence appears inconsistent across cases. ²⁹ This suggests that pain generation in MMD likely reflects broader hemodynamic or neurogenic mechanisms rather than focal vascular stenosis alone. Duration patterns also vary widely, ranging from several hours to multiple days, with most cases reporting headache episodes lasting less than 24 hours.

Associated symptoms frequently accompany headaches in MMD, enhancing their similarity to primary headache disorders. Nausea and vomiting are common accompanying symptoms, reported in multiple observational and case studies. ^{8,21} Photophobia, phonophobia, and occasionally allodynia are also reported, further mimicking the symptom profile of primary migraine. ^{5,21} In patients with cluster-like presentations, ipsilateral autonomic features such as lacrimation, rhinorrhea, and ptosis may occur, though

these appear to be relatively rare.²⁸

A distinctive feature of headache in MMD is its frequent association with neurological symptoms, either concurrent with headache episodes or as separate manifestations. In MMD patients with headache, TIAs, hemiparesis, dysarthria, numbness, and visual disturbances are commonly reported in association with headache episodes (Table 2). ^{28,29,31,33} This pattern of alternating or concurrent headache and focal neurological deficits is strongly suggestive of an underlying cerebrovascular disorder and should prompt consideration of MMD in the differential diagnosis, particularly in young patients without conventional vascular risk factors.


Provocation factors for headache in MMD offer insights into pathophysiological mechanisms. Physical exertion, stress, and straining effort are reported triggers in several cases. ^{5,30,31} Seol et al. ⁸ specifically demonstrated that hyperventilation triggered headache in four patients, three of whom also experienced TIAs, suggesting a shared hemodynamic mechanism involving vasoconstriction and reduced cerebral perfusion. Morning predominance of headache was reported in 31.8% of patients in the same study, potentially reflecting nocturnal hypercapnia or positional changes in cerebral perfusion.

The diagnostic challenge of headache in MMD lies in its phenotypic overlap with primary headache disorders. Several distinguishing features should raise suspicion for underlying MMD, including: (1) atypical age of onset (very young children or young adults without family history of migraine); (2) concurrent or alternating focal neurological deficits; (3) headache triggered by exertion or hyperventilation; (4) refractory headache unresponsive to conventional treatments; and (5) unusual aura phenomena, particularly prolonged or atypical aura symptoms. The presence of these features should prompt consideration of neurovascular imaging, even in patients with otherwise typical-appearing headache presentations (Figure 1).

PATHOPHYSIOLOGICAL MECHANISMS OF HEADACHES IN MOYAMOYA DISEASE

The underlying pathophysiological mechanisms of headaches in MMD remain poorly understood. These mechanisms are complex and involve both primary and secondary headaches. Several plausible mechanisms have been proposed.

First, nociceptors in cerebral arteries and the dura have been suggested as one of the culprits. MMD is a chronic, progressive steno-occlusive disease characterized by the development of compensatory collateral circulation, particularly involving vasodilation of cortical vessels and small

Figure 1. A practical approach to headache associated with Moyamoya disease (MMD). "Red flags" include the presence of sudden focal neurological deficits; the occurrence of thunderclap headache characterized by abrupt and severe pain; the presence of seizures or cognitive changes associated with headache; and new-onset or worsening headache.

ICHD-3, International Classification of Headache Disorders, 3rd edition; CT, computed tomography; MRI, magnetic resonance imaging; MRA, magnetic resonance angiography; SPECT, single-photon emission computed tomography.

perforators in the skull base. This vasodilation may stimulate dural nociceptors, especially through transdural or leptomeningeal collaterals, and perivascular nociceptors. Additionally, cerebral aneurysms are observed in 3%–18% of MMD patients and may occur in major trunks of the circle of Willis or peripheral vessels, including the choroidal, lenticulostriate, meningeal, or moyamoya arteries. Enlargement of these aneurysms may lead to activation of vascular nociceptors.

Second, neurogenic inflammation, a form of inflammation initiated by the activation of peripheral sensory nerve fibers (especially nociceptors), may contribute to headache in MMD. ⁴⁰ Stimulation of dural nociceptors via dilated leptomeningeal collaterals could activate and sensitize the trigeminovascular system through the release of calcitonin gene-related peptide (CGRP), substance P, nitric oxide, and pituitary adenylate cyclase-activating polypeptide, resulting in neuroinflammatory responses such as mast cell degranulation, plasma protein extravasation, and vasodilation. ^{6,41-43} This mechanism shares features with the neuroinflammation underlying migraine pathophysiology. ^{5,17}

Third, chronic intracranial hypoperfusion and hypoxia may contribute to headaches, as cerebral hypoperfusion is known to lower the threshold for migraine and increase the risk of cortical spreading depression. 34,44 Migraine-like headaches are, in fact, the most commonly reported headache type in MMD. Cortical spreading depression triggered by chronic cerebral hypoperfusion may be associated with the high prevalence of migraine with aura in MMD. 17,45 Chronic ischemia leads to the overexpression of pro-inflammatory cytokines such as interleukin- 1β and tumor necrosis factor-α, as well as vascular endothelial growth factor, which can sensitize perivascular nerves.^{6,46} Notably, revascularization aimed at improving ischemia and cerebrovascular reserve has been reported to reduce the intensity and frequency of preoperative headaches, regardless of the bypass type (direct or indirect) and age of onset. 10,13,21 However, most studies did not specify headache subtypes in detail. Conversely, headaches may also occur after revascularization surgery, often referred to as postoperative headaches. One study evaluating postoperative headaches following direct bypass surgery in adult MMD patients found that postoperative superficial temporal artery (STA) diameter and the rate of postoperative increase in STA diameter were significantly associated with postoperative headaches.¹⁵ This suggests that STA dilation may be responsible, as the outer layer of the STA contains nociceptive nerve endings and sensory fibers derived from the trigeminal nerve.

Fourth, headaches—particularly in pediatric MMD patients—may result from platelet aggregation activity secondary to endothelial cell damage. In a study of 35 pediatric patients with ischemic-onset MMD, low-dose aspirin use was associated with an improvement in intractable headaches in 85% of patients within one month after revascularization surgery.⁷

Finally, it is important to consider that some patients may suffer from coincidental primary headaches such as migraine or tension-type headache, considering the high prevalence of primary headaches in the general population.

MANAGEMENT OF HEADACHES IN MOYAMOYA DISEASE

Migraine-like headaches, either alone or accompanied by tension-type headaches, are the most commonly reported headache types in MMD.²³ Treatment strategies for headaches in patients with MMD have not been standardized due to the lack of relevant studies. Although some approaches are derived from the management of migraine or tension-type headaches, they are mostly based on clinical experience and the underlying pathophysiological characteristics of MMD—chronic steno-occlusion with compensatory collateral formation, fragile vascular networks, and medication side effects.⁴⁷

Medical management of headaches in MMD has not been systematically studied and the most appropriate and effective analgesics for MMD-related headaches remain unknown. From a safety standpoint, general pain relievers such as acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used, with vasoconstrictive drugs typically avoided. However, caution is needed when using NSAIDs due to their potential to increase bleeding risk.

Common migraine medications such as triptans (5-HT-1B/1D agonists) and dihydroergotamine should generally be avoided in MMD, particularly in cases with abundant leptomeningeal collaterals, due to their vasoconstrictive effects. Lasmiditan, a selective 5-HT1F receptor agonist

that inhibits neuropeptide release and pain transmission in the trigeminovascular system, may serve as a safer alternative for the abortive treatment of migraine-like headaches in MMD, as it does not induce vasoconstriction. 48,49 CGRP-targeted therapies, including monoclonal antibodies and CGRP antagonists, have recently emerged as a novel class of agents in migraine treatment. However, given that CGRP acts as a potent vasodilator, 50,51 these therapies may not be suitable for MMD patients, as they could inhibit essential compensatory vasodilation.

As mentioned earlier, low-dose aspirin may be more effective in pediatric MMD patients with intractable headaches than analgesics such as NSAIDs or acetaminophen.⁷ In addition, a nationwide cohort study demonstrated that cilostazol use in patients with MMD was associated with improved survival compared with other antiplatelet agents, likely due to its combined antiplatelet, vasodilatory, and endothelial-protective effects.⁵² Furthermore, a high-resolution MRI study showed that cilostazol was associated with favorable vessel wall changes and stabilization of disease progression in adult-onset MMD.⁵³ Although direct evidence on headache outcomes is lacking, these findings suggest that cilostazol may alleviate ischemia-related headaches by improving cerebral perfusion and modifying disease course, thus warranting further prospective studies. However, the efficacy of other antiplatelet agents or their combinations remains unclear due to a lack of relevant studies.

For migraine prevention, a range of pharmacological and non-pharmacological strategies can be considered in MMD, particularly when revascularization is not feasible or when headaches persist after surgery. Pharmacological preventives include antidepressants, anti-seizure medications, beta-blockers, calcium channel blockers, and botulinum toxin A.54 In the context of MMD, however, beta-blockers and calcium channel blockers should be prescribed with caution because of their potential to worsen cerebral hypoperfusion. Among these, amitriptyline, topiramate, propranolol, and cyproheptadine are commonly used in pediatric migraine, whereas others, such as botulinum toxin A, are currently approved only for adult chronic migraine prophylaxis. Sodium valproate has also been reported in a pediatric MMD case to markedly reduce hemiplegic migraine-like attacks, highlighting its potential role as a preventive therapy, especially in patients with coexisting seizures.⁵⁵ Consistent with the Korean Headache Society guideline, valproate remains an established option for migraine prevention, although its safety profile requires careful consideration. Botulinum toxin A, while not specifically studied in MMD, is guideline-endorsed for chronic migraine prophylaxis in adults and may be considered in refractory MMD patients with chronic migraine-like headaches, given its lack of vasoconstrictive or hemodynamic effects. Non-pharmacological interventions- including regular sleep hygiene, dietary changes, adequate hydration, increasing physical activity, and behavior therapy-may be recommended as initial treatment and complement pharmacological therapies to both pediatric and adult MMD patients due to their high safety and tolerability.

Revascularization surgery, irrespective of the technique employed, has been reported to alleviate headaches in both pediatric and adult patients with MMD. Nevertheless, headaches may persist or newly emerge following surgery. 9,12 A recent study involving 119 Chinese MMD patients (80.6% underwent surgery; 19.4% received conservative treatment) assessed the impact of surgery on headache outcomes. While preoperative headaches improved in the surgical group, there was no significant difference between the surgical and conservative groups in terms of long-term effects on headache frequency and intensity over a 5-year follow-up.²³ These findings suggest that in MMD patients who undergo bypass surgery, the underlying mechanisms of postoperative headaches may be more complex and differ from the preoperative headache mechanisms discussed above. These include postoperative dynamic change of cerebral circulation, stimulation of dural trigeminal nociceptors and neurogenic inflammation following indirect or direct bypass, surgical trauma to intracranial structures caused by craniotomy, and aggravation of dilated collateral vessels in accordance with the disease progression.^{6,8} Therefore, the primary goal of revascularization should remain the prevention of ischemic and hemorrhagic events rather than headache relief (Figure 1).

BROADER IMPLICATIONS, APPLICATIONS, AND CONCLUSIONS

Headache in MMD represents more than a comorbid symptom—it serves as a potential clinical indicator of hemodynamic compromise and cerebrovascular instability.

Recognizing the diverse and often migraine-like headache patterns associated with MMD may improve early detection, particularly in young or otherwise low-risk individuals. This review aims to provide a practical overview of headaches in MMD by synthesizing evidence on their epidemiology, clinical features, underlying mechanisms, and management strategies. Headache is one of the most frequent and disabling symptoms in MMD, particularly in pediatric patients, and can present with diverse phenotypes, including migraine-like, tension-type, and hemiplegic patterns. These overlapping features with primary headaches complicate diagnosis but may serve as an important clinical clue to underlying cerebrovascular disease.

Pathophysiological insights suggest contributions from chronic cerebral hypoperfusion, abnormal collateral circulation, and neurogenic inflammation, highlighting why MMD-related headaches are often severe and refractory to conventional therapies.

Treatment strategies remain empirical and individualized. While analgesics are used cautiously, vasoconstrictive agents such as triptans and ergotamines are generally avoided. Preventive therapies, including commonly used migraine medications, may be considered on a caseby-case basis, complemented by non-pharmacological approaches. Revascularization surgery can improve headaches in some patients, though long-term outcomes are inconsistent, and headache relief should not be the sole indication for surgery.

In conclusion, headaches in MMD are not only a source of disability but also a potential marker of disease activity. Greater awareness of their clinical spectrum and mechanisms can aid earlier recognition, guide more rational management, and improve quality of life for patients. Future studies should adopt prospective designs and standardized headache assessments to establish evidence-based guidelines for treatment.

AVAILABILITY OF DATA AND MATERIAL

The data presented in this study are available upon reasonable request from the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization: JCC; Writing-original draft: MYE, JMJ,

JCC; Writing-review & editing: MYE, JMJ, JCC.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

FUNDING STATEMENT

Not applicable.

ACKNOWLEDGMENTS

Not applicable.

REFERENCES

- Suzuki J, Takaku A. Cerebrovascular "moyamoya" disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol 1969;20:288-299.
- **2.** Kamada F, Aoki Y, Narisawa A, et al. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet 2011;56:34-40.
- 3. Milewicz DM, Østergaard JR, Ala-Kokko LM, et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am J Med Genet A 2010; 152A:2437-2443.
- 4. Hervé D, Philippi A, Belbouab R, et al. Loss of $\alpha 1\beta 1$ soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am J Hum Genet 2014;94:385-394.
- Zach V, Bezov D, Lipton RB, Ashina S. Headache associated with moyamoya disease: a case story and literature review. J Headache Pain 2010;11:79-82.
- **6.** Chiang CC, Shahid AH, Harriott AM, et al. Evaluation and treatment of headache associated with moyamoya disease: a narrative review. Cephalalgia 2022;42:542-552.
- Aihara Y, Kashiwase S, Chiba K, et al. Aspirin use and platelet aggregation in ischemic onset-type pediatric moyamoya patients with intractable headaches (moya-ache). Childs Nerv Syst 2021;37:1649-1657.
- **8.** Seol HJ, Wang KC, Kim SK, Hwang YS, Kim KJ, Cho BK. Headache in pediatric moyamoya disease: review of 204 consecutive cases. J Neurosurg 2005;103:439-442.
- 9. Kim SK, Cho BK, Phi JH, et al. Pediatric moyamoya disease: an analysis of 410 consecutive cases. Ann Neurol 2010;68:92-101.

- Kawabori M, Kuroda S, Nakayama N, et al. Effective surgical revascularization improves cerebral hemodynamics and resolves headache in pediatric Moyamoya disease. World Neurosurg 2013;80:612-619.
- Vassilopoulou S, Tountopoulou A, Korompoki E, et al. Moyamoya disease: clinical and radiological characteristics in adult Greek patients. J Clin Med 2023;12:5951.
- 12. Okada Y, Kawamata T, Kawashima A, Yamaguchi K, Ono Y, Hori T. The efficacy of superficial temporal artery-middle cerebral artery anastomosis in patients with moyamoya disease complaining of severe headache. J Neurosurg 2012;116:672-679.
- **13.** Matsushima Y, Aoyagi M, Niimi Y, Masaoka H, Ohno K. Symptoms and their pattern of progression in childhood moyamoya disease. Brain Dev 1990;12:784-789.
- 14. Bohara M, Sugata S, Nishimuta Y, et al. Effect of revascularization on headache associated with moyamoya disease in pediatric patients. Hiroshima J Med Sci 2015;64:39-44.
- Katano H, Nishikawa Y, Yamada H, Shibata T, Miyachi S, Mase M. Association of superficial temporal artery dilatation with headache after revascularization in adult moyamoya disease. World Neurosurg 2019;129:e594-e606.
- Yu GJ, Kim SY, Coe CJ. Moyamoya disease in Korea. Yonsei Med J 1991;32:263-269.
- 17. Kraemer M, Lee SI, Ayzenberg I, et al. Headache in Caucasian patients with Moyamoya angiopathy: a systematic cohort study. Cephalalgia 2017;37:496-500.
- **18.** Teo M, Abhinav K, Bell-Stephens TE, et al. Short- and long-term outcomes of moyamoya patients post-revascularization. J Neurosurg 2022;138:1374-1384.
- Tho-Calvi SC, Thompson D, Saunders D, et al. Clinical features, course, and outcomes of a UK cohort of pediatric moyamoya. Neurology 2018;90:e763-e770.
- **20.** Amlie-Lefond C, Ellenbogen RG. Factors associated with the presentation of moyamoya in childhood. J Stroke Cerebrovasc Dis 2015;24:1204-1210.
- Gallego Moyano FD, Janssen HC, Venkatraghavan L, et al. The impact of revascularization surgery on headaches in association with cerebrovascular reactivity in patients with Moyamoya angiopathy. Brain Sci 2024;14:967.
- **22.** Das S, Dubey S, Acharya M, et al. The disease presentation of Moyamoya angiopathy in Eastern India. J Stroke Cerebrovasc Dis 2020;29:104957.
- **23.** Gao B, Kang K, Zhang J, Zhang D, Zhao X. Clinical characteristics and long-term outcome of headaches associated with Moyamoya disease in the Chinese population: a cohort study. Front

- Neurol 2020:11:605636.
- Battistella PA, Carollo C. Clinical and neuroradiological findings of moyamoya disease in Italy. Clin Neurol Neurosurg 1997;99 Suppl 2:S54-S57.
- **25.** Hoshino H, Izawa Y, Suzuki N; Research Committee on Moyamoya Disease. Epidemiological features of moyamoya disease in Japan. Neurol Med Chir (Tokyo) 2012;52:295-298.
- 26. Sutton CXY, Carrazana E, Mitchell C, Viereck J, Liow KK, Ghaffari-Rafi A. Identification of associations and distinguishing moyamoya disease from ischemic strokes of other etiologies: a retrospective case-control study. Ann Med Surg (Lond) 2022;78:103771.
- **27.** Das S, Ray BK, Ghosh R, Dubey S. "Asymptomatic" Moyamoya Angiopathy: is it truly asymptomatic?. J Stroke Cerebrovasc Dis 2022;31:106432.
- **28.** Sewell RA, Johnson DJ, Fellows DW. Cluster headache associated with moyamoya. J Headache Pain 2009;10:65-67.
- **29.** Siddiqui MR, Khan SU, Hoque MA, Rahman KM, Mondol MB, Mohammad QD. Moyamoya disease presented as a case of hemiplegic migraine. BMJ Case Rep 2010;2010:bcr0220102764.
- **30.** Tozzi E, Antenucci A, Di Loreto S, Maresca M, Farello G, Massimi L. O063. Moyamoya disease and headache: case report. J Headache Pain 2015;16:A73.
- **31.** Verdure P, Le Moigne O, Massardier EG, Vanhulle C, Tollard E, Maltête D. Migraine-like headache and ocular malformations may herald Moyamoya syndrome. Rev Neurol (Paris) 2012;168:460-461.
- **32.** Vuignier S, Akioka N, Hamada H, Kashiwazaki D, Kuroda S. Headache attack followed by rapid disease progression in pediatric moyamoya disease: how should we manage it? Childs Nerv Syst 2014;30:1733-1736.
- **33.** Khan F, Fatima F, Malik F, et al. Atypical presentation of moyamoya disease presenting with severe headache: a case report. Cureus 2025;17:e80378.
- **34.** Park-Matsumoto YC, Tazawa T, Shimizu J. Migraine with aura-like headache associated with moyamoya disease. Acta Neurol Scand 1999;100:119-121.
- **35.** Aydin K, Okuyaz C, Gücüyener K, Serdaroğlu A, Akpek S. Moyamoya disease presented with migrainelike headache in a 4-year-old girl. J Child Neurol 2003;18:361-363.
- **36.** Lee WJ, Kim YO, Yoon W, Rho YJ, Woo YJ. Headache associated with moyamoya disease in a child: pain pattern in MRA progression. J Korean Child Neurol Soc 2014;22:98-101.
- **37.** Diaz UJ, Cabán-Martinez AJ, Halder GE. Presentation with recurrent intractable headache: a patient with moyamoya syn-

- drome: case report. Neurol Med Chir (Tokyo) 2014;54:133-135.
- **38.** Uchino H, Kazumata K, Ito M, Nakayama N, Houkin K. Novel insights into symptomatology of moyamoya disease in pediatric patients: survey of symptoms suggestive of orthostatic intolerance. J Neurosurg Pediatr 2017;20:485-488.
- **39.** Feng Z, Chang Y, Fu C. Ruptured peripheral cerebral aneurysms associated with moyamoya disease: a systematic review. J Stroke 2024;26:360-370.
- 40. Holst H, Arendt-Nielsen L, Mosbech H, Serup J, Elberling J. Capsaicin-induced neurogenic inflammation in the skin in patients with symptoms induced by odorous chemicals. Skin Res Technol 2011;17:82-90.
- **41.** Buzzi MG, Moskowitz MA. The trigemino-vascular system and migraine. Pathol Biol (Paris) 1992;40:313-317.
- **42.** Khan S, Amin FM, Christensen CE, et al. Meningeal contribution to migraine pain: a magnetic resonance angiography study. Brain 2019;142:93-102.
- **43.** Spekker E, Tanaka M, Szabó Á, Vécsei L. Neurogenic inflammation: the participant in migraine and recent advancements in translational research. Biomedicines 2021;10:76.
- **44.** Olesen J, Friberg L, Olsen TS, et al. Ischaemia-induced (symptomatic) migraine attacks may be more frequent than migraine-induced ischaemic insults. Brain 1993;116:187-202.
- **45.** Menyhárt Á, Varga DP, M Tóth O, Makra P, Bari F, Farkas E. Transient hypoperfusion to ischemic/anoxic spreading depolarization is related to autoregulatory failure in the rat cerebral cortex. Neurocrit Care 2022;37:112-122.
- **46.** Konsman JP, Drukarch B, Van Dam AM. (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci (Lond) 2007;112:1-25.

- 47. Canavero I, Vetrano IG, Zedde M, et al. Clinical management of moyamoya patients. J Clin Med 2021;10:3628.
- **48.** Shapiro RE, Hochstetler HM, Dennehy EB, et al. Lasmiditan for acute treatment of migraine in patients with cardiovascular risk factors: post-hoc analysis of pooled results from 2 randomized, double-blind, placebo-controlled, phase 3 trials. J Headache Pain 2019;20:90.
- **49.** Nelson DL, Phebus LA, Johnson KW, et al. Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan. Cephalalgia 2010;30:1159-1169.
- 50. Favoni V, Giani L, Al-Hassany L, et al. CGRP and migraine from a cardiovascular point of view: what do we expect from blocking CGRP? J Headache Pain 2019;20:27.
- 51. Zhai L, Sakurai T, Kamiyoshi A, et al. Endogenous calcitonin gene-related peptide suppresses ischemic brain injuries and progression of cognitive decline. J Hypertens 2018;36:876-891.
- 52. Seo WK, Kim JY, Choi EH, et al. Association of antiplatelet therapy, including cilostazol, with improved survival in patients with moyamoya disease in a nationwide study. J Am Heart Assoc 2021;10:e017701.
- 53. Kim JY, Kim HJ, Choi EH, et al. Vessel wall changes on serial high-resolution MRI and the use of cilostazol in patients with adult-onset moyamoya disease. J Clin Neurol 2022;18:610-618.
- **54.** Kim BS, Chung PW, Chung JM, et al. Evidence-based recommendations on pharmacologic treatment for migraine prevention: a clinical practice guideline from the Korean Headache Society. Headache Pain Res 2025;26:5-20.
- 55. Bidaki R, Zarepur E. Intermittent hemiplegia in a boy with primary moyamoya disease: a case report from Iran. Iran J Child Neurol 2017;11:65-68.

Review Article

Headache Pain Res 2025;26(3):184-192 pISSN: 3022-9057 • eISSN: 3022-4764 https://doi.org/10.62087/hpr.2025.0012

Gepants for Migraine: An Update on Long-Term Outcomes and Safety Profiles

Soohyun Cho[®], Kimoon Chang[®]

Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea

Abstract

Calcitonin gene-related peptide receptor antagonists, also referred to as gepants, represent a transformative advancement in migraine pharmacotherapy, providing both acute and preventive treatment options without the vasoconstrictive limitations of triptans. Since their initial approval in 2019, gepants have gained widespread clinical adoption, necessitating comprehensive evaluation of their long-term safety and efficacy. This review synthesizes current evidence on four calcitonin gene-related peptide receptor antagonists (rimegepant, atogepant, ubrogepant, and zavegepant) derived from pivotal trials, open-label extension studies, and real-world observational data. Rimegepant demonstrates sustained efficacy and minimal adverse events over 52 weeks, with no evidence of medication-overuse headaches or hepatotoxicity. Atogepant maintains progressive clinical benefits and favorable tolerability for up to 1 year, exhibiting low rates of treatment-emergent adverse events and discontinuation. Ubrogepant remains effective and well-tolerated during long-term intermittent use, with no clinically significant safety signals over extended exposure. Zavegepant, the first intranasal gepant, shows promising long-term tolerability, with the most frequently reported localized adverse event being transient dysgeusia. No consistent hepatic, cardiovascular, or serious systemic toxicity has emerged for any of the agents, and discontinuation rates due to adverse events remain consistently low. Current evidence supports gepants as safe and effective therapies for long-term migraine management, although ongoing surveillance and extended-duration studies remain essential to fully characterize their safety profile, particularly in high-risk populations and combination therapy scenarios. In conclusion, gepants offer a well-tolerated, non-vasoconstrictive alternative for migraine patients who require sustained treatment, representing a significant therapeutic advancement in migraine.

Keywords: Calcitonin gene-related peptide receptor antagonists, Longitudinal studies, Migraine disorders, Safety, Treatment outcome

INTRODUCTION

Migraine is a common, disabling neurologic disorder driven in part by activation of the trigeminovascular system and release of neuropeptides such as calcitonin gene-related peptide (CGRP). ^{1,2} CGRP is a critical mediator, which is released from trigeminal neurons during migraine attacks and potently dilates cranial blood vessels. ³ Elevated CGRP levels have been correlated with migraine pain, and infusion of CGRP can trigger migraine in susceptible individ-

Received: August 5, 2025; Revised: September 3, 2025; Accepted: September 4, 2025

Correspondence: Soohyun Cho, M.D., Ph.D.

Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, 712 Dongil-ro, Uijeongbu 11749, Republic of Korea Tel: +82-31-951-1000, Fax: +82-31-951-1093, E-mail: anttop@naver.com

®This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{© 2025} The Korean Headache Society

uals.⁴ These insights led to the development of CGRP-targeted therapies, notably the CGRP receptor antagonists (gepants).

Gepants are small-molecule compounds (molecular weight <1 kDa) that selectively antagonize CGRP receptors, thereby preventing CGRP from binding and triggering the pro-migraine signaling cascade. These agents primarily inhibit CGRP signaling at peripheral sites outside the blood-brain barrier due to their minimal central nervous system penetration, effectively reducing neurogenic inflammation and pain transmission without inducing direct vasoconstriction.⁵ This mechanism represents a critical therapeutic advantage over triptans: while triptans cause significant vasoconstriction of cranial and coronary vessels, gepants achieve antimigraine efficacy without compromising vascular function. Although early first-generation gepants such as telcagepant demonstrated therapeutic promise, their development was discontinued due to hepatotoxicity concerns.⁷ The subsequent development of second-generation gepants has successfully addressed these safety issues, establishing a new paradigm in migraine-specific pharmacotherapy.^{7,8}

Four CGRP receptor antagonists have received regulatory approval since 2019, heralding a transformative era in migraine therapeutics. Ubrogepant and rimegepant were the pioneering oral gepants approved for acute migraine management, with ubrogepant gaining approval in late 2019 followed by rimegepant in 2020. 9-12 Both agents demonstrate rapid onset of pain relief while circumventing the cardiovascular contraindications that limit triptan use. 13 Atogepant represents a distinct therapeutic advance as the first oral gepant specifically developed for migraine prophylaxis. Initially approved in 2021 for preventive treatment of episodic migraine with once-daily dosing, its indication was subsequently expanded in 2023 to include chronic migraine prevention. 14,15 Zavegepant, classified as a third-generation gepant, introduced a novel delivery mechanism as the first intranasally administered CGRP antagonist, receiving approval in 2023 for acute migraine treatment.¹⁶ The nasal spray formulation of zavegepant offers distinct clinical advantages through rapid mucosal absorption and provides a valuable therapeutic option for patients experiencing nausea or vomiting during migraine episodes, circumstances that often preclude effective oral medication administration.¹⁶

With the expanding clinical adoption of gepants, a growing number of patients are receiving long-term therapy, generating considerable interest and concern regarding the efficacy, safety, and potential adverse events associated with prolonged use. This review focuses specifically on the safety profiles of gepants and their long-term clinical outcomes in migraine management. Our objective is to provide clinicians with a comprehensive, up-to-date analysis of long-term safety data and therapeutic outcomes for gepants, thereby facilitating informed decision-making when considering these agents for migraine patients.

LONG-TERM OUTCOMES WITH GEPANTS

1. Rimegepant

Rimegepant demonstrated sustained efficacy over extended treatment periods when administered every other day for migraine prevention and/or as-needed for acute migraine management.¹⁷ In a pivotal 52-week open-label study evaluating rimegepant for as-needed acute treatment, patients demonstrated a significant reduction in migraine frequency throughout the study period: monthly migraine days decreased from a baseline of 10.9 days to 8.9 days by week 52.¹⁷ During the open-label study, long-term preventive and acute rimegepant treatment consistently reduced migraine frequency throughout the 52-week period, with patients experiencing a decrease from a baseline mean of 9.9 monthly migraine days to an average reduction of 6.2 days per month. 18 The proportion of patients achieving ≥50% reduction in mean moderate or severe monthly migraine days progressively increased from 63.6% during weeks 1-4 to 80.9% during weeks 49-52. Comparable improvements were observed for ≥75% reductions (increasing from 44.1% to 65.8%) and complete elimination of moderate to severe migraine days (increasing from 25.6% to 49.3%). 19 Throughout the 52-week treatment period, preventive and/or acute rimegepant therapy yielded significant improvements in quality of life, as evidenced by enhanced scores across improved EuroQol-5 Dimensions-3 Level utility values and multiple domains of the Migraine-Specific Quality of Life (MSQoL).²⁰ There was no evidence of medication-overuse headache development and migraine frequency remained stable or decreased despite some patients utilizing rimegepant on a near-daily basis. 21,22 In the long-term open-label extension study, rimegepant 75 mg taken as-needed up to once daily for acute migraine treatment showed that mean monthly tablet utilization remained stable or trended downward over 1 year of follow-up, decreasing from 7.9 tablets in weeks 4-8 to 7.3 tablets in weeks 48-52.¹⁷ This contrasts markedly with the long-term use of triptans or analgesics in comparable populations, which frequently results in escalating headache frequency and medication-overuse headache development. The distinctive dual acute-preventive properties of rimegepant appear to be preserved with sustained use, representing a significant therapeutic advantage in migraine management. In contrast, Croop et al.²¹ primarily focused on long-term safety assessments. The efficacy outcomes were restricted to patient-reported measures, including MSQoL, medication preference, patient satisfaction, and clinical global improvement relative to baseline, and did not provide detailed reporting on reductions in headache attack frequency.²¹

2. Atogepant

Atogepant is developed exclusively as a preventive treatment option for migraine.²³ The 52-week open-label trial of once-daily atogepant 60 mg demonstrated progressive and sustained efficacy in migraine prevention, with mean monthly migraine days reduction increasing from -3.8 during weeks 1-4 to -5.2 at weeks 49-52.²⁴ The proportion of participants achieving clinically meaningful response rates showed marked improvement over time: ≥50% monthly migraine days reduction increased from 60.4% early in treatment to 84.2% by study end, while ≥75% and 100% reduction rates similarly improved from 37.2% and 20.7% to 69.9% and 48.4%, respectively. 24 These findings demonstrate that atogepant provides not only immediate preventive benefits but also enhanced efficacy with continued long-term use, establishing its durability as a migraine-specific preventive therapy. Another positive outcome is sustained improvements in patient-reported outcomes, with MSQoL scores showing least-squares mean changes from baseline of 30.0 (95% confidence interval [95% CI], 28.2-31.9) at week 12, further improving to 34.7 (95% CI, 32.7-36.7) at week 52.25 Significant improvements were also observed across other MSQoL domains, as well as in Activity Impairment, Productivity Impairment, and Headache Impact Test-6 total scores throughout the study period. These findings demonstrate that atogepant provides progressive and durable benefits in migraine-related quality of life and functional outcomes, with improvements maintained and enhanced over long-term treatment. The sustained patient-reported outcome improvements complement the clinical efficacy data, supporting atogepant's role as an effective preventive therapy that meaningfully impacts patients' daily functioning and well-being. Alexandre 1942-25

3. Ubrogepant

The 52-week extension study following the 12-week pivotal studies (ACHIEVE I and II trials)^{26,27} demonstrated sustained therapeutic efficacy, with 2-hour pain freedom achieved in approximately 23% (50 mg) and 25% (100 mg) of treated attacks, while 2-hour pain relief was observed in 65%–68% of cases.^{26,29} Efficacy was markedly superior when treating mild-intensity attacks during a 52-week treatment period. In a within-subject analysis, ubrogepant 50 mg and 100 mg demonstrated significantly higher 2-hour pain freedom rates when taken at the mild headache (50 mg: 51.2%, 100 mg: 54.3%) compared to the moderate/severe headache (50 mg: 24.6%, 100 mg: 27.2%).³⁰ These findings suggest that early treatment with ubrogepant leads to improved efficacy in acute migraine management.³⁰

LONG-TERM SAFETY PROFILES WITH GEPANTS

An overview of long-term safety data from open-label studies of rimegepant, atogepant, ubrogepant, and zavegepant is summarized in Table 1.

1. Rimegepant

Long-term safety profile has been characterized through a large open-label extension study and supported by real-world registry data and subgroup analyses. ^{21,22,31,32} A 52-week, open-label study evaluated the long-term safety of rimegepant 75 mg as-needed therapy in 1,798 adults with migraine. ²¹ The results demonstrated good tolerability, with 13.8% of participants experiencing treatment-emergent adverse events (TEAEs) considered drug-related. The most frequently reported TEAEs were mild and included

Table 1. Long-term safety profiles of gepants based on open-label studies

Drug (dose)	Patients (n)	Exposure (wk)	Treatment-related TEAEs	Serious AEs	Discontinuation due to AEs
Rimegepant (75 mg PRN)	1,798	52	13.8% overall; most common: URI (8.8%), nasopharyngitis (6.8%), sinusitis (5.1%)		2.6%. Reasons not individually listed >1%. In subgroups: 2.5% (CV risk)
Atogepant (60 mg QD)	372	52	≥1 TEAE in 64.5% (vs. 78.6% in standard care). Most common: URI (7.7%), constipation (5.0%–6.0%), nausea (4.6%), UTI (5.2%)	3.8% (vs. 3.6% in control); mostly unrelated to treat- ment; no dose-dependent pattern; no liver toxicity	4.3%. Most common reasons: nausea (0.5%), dizziness (0.3%)
Ubrogepant (50/100 mg)	813 (404/409)	52	66% (50 mg), 73% (100 mg); most common: URI, nasopharyngitis, nausea; treatment-related: 10.4% (50 mg), 10.5% (100 mg)	SAEs occurred in 2%–3% of patients; none were considered treatment-related; no deaths reported	2.2% (50 mg), 2.7% (100 mg). Reasons not individually listed <1%
Zavegepant (10 mg nasal)	603	52	62.2% any TEAE; 10.5% treatment-related. Most common: dysgeusia (13.5%), nausea (3.4%), nasal discomfort (2.5%)	SAEs in 1.3% of patients, none were treatment-relat- ed. Liver enzyme elevation in 2.3% (no Hy's Law cas- es); no BP or CV signal	7.3% overall; dysgeusia most common reason (4.3%)

TEAE, treatment-emergent adverse event; AE, adverse event; PRN, as needed (pro re nata); QD, once daily; URI, upper respiratory infection; SAE, serious adverse event; CV, cardiovascular; UTI, urinary tract infection; BP, blood pressure.

upper respiratory tract infection (8.8%), nasopharyngitis (6.8%), and sinusitis (5.1%). Treatment discontinuation due to adverse events occurred in 2.7% of patients, and serious adverse events (SAEs) were reported in 2.6% of patients, with drug-related SAEs in 0.6%. Importantly, no cases of drug-induced liver injury were identified, confirming rimegepant's hepatic safety profile during long-term intermittent use. In addition to the primary open-label study,²¹ two subgroup analyses have been reported. 31,32 True et al.31 analyzed 570 patients stratified by cardiovascular risk factors, showing that the long-term safety and tolerability of rimegepant were consistent regardless of baseline cardiovascular risk, with treatment-related TEAEs occurring in 14.2% of patients and discontinuation due to adverse events in 2.5%. Similarly, Berman et al. 32 evaluated 695 patients stratified by concomitant preventive medication use. The rate of treatment-related TEAEs classified as related to rimegepant was comparable between the cohort using preventives (22.2%) and the cohort not using them (19.7%). The incidence of serious treatment-related AEs was also low in both groups, occurring in 1.6% and 0.4% of participants, respectively. 32 These subgroup findings support that the favorable safety profile of rimegepant is preserved across clinically relevant patient groups. Real-world

validation comes from the GAINER study, a prospective, multicenter Italian study evaluating rimegepant for acute migraine treatment. This study demonstrated adverse events reported in 15.5% of participants and no SAEs documented. Patient-reported tolerability was rated as good or excellent in 85.4% of patients, and no treatment discontinuations due to adverse events were reported.

2. Atogepant

Safety of atogepant was established in 12-week phase 3 studies and further supported by open-label extension studies. There were open-label 52-week and 40-week long-term safety studies with an ongoing follow-up to 156 weeks (NCT04686136). Participants who completed one of pivotal studies were eligible to participate in the long-term safety studies. ^{24,33} In a 52-week randomized open-label trial of once-daily atogepant 60 mg (n=744), \geq 1 TEAE was reported in 67.0% of participants, most commonly upper respiratory tract infection (10.3%), constipation (7.2%), nausea (6.3%), and urinary tract infection (5.2%). Serious TEAEs occurred in 4.4% and discontinuations due to adverse events in 5.7%. ²⁴

In a separate 40-week open-label extension of the AD-

VANCE trial (n=685), \geq 1 TEAE occurred in 62.5% of participants. The most common TEAEs were upper respiratory tract infection (5.5%), urinary tract infection (5.3%), nasopharyngitis (4.8%), sinusitis (3.6%), constipation (3.4%), and nausea (3.4%). Serious TEAEs occurred in 3.4% of patients, none considered treatment-related, and discontinuation due to adverse events occurred in 3.2%. In this Ashina et al.'s study, efficacy outcomes were not collected, as this extension focused solely on safety.

From open-label extension studies, atogepant is well tolerated, with few patients requiring treatment cessation due to adverse events, and that most side effects are manageable within clinical practice. Atogepant 60 mg once daily has been reported to induce clinically meaningful weight loss in patients with migraine who are overweight or obese, as presented at the 2025 American Headache Society Annual Scientific Meeting and supported by data from the ongoing long-term extension study (NCT04686136). Approximately one-third of participants achieved a $\geq 5\%$ reduction in body weight after 52 weeks, with a mean weight loss of $3.4~{\rm kg}$.

3. Ubrogepant

A 52-week phase 3 extension study provides robust evidence for ubrogepant's long-term safety profile in acute migraine treatment.²⁸ The study enrolled 813 participants (404 receiving 50 mg, 409 receiving 100 mg) who collectively treated 21,454 migraine attacks with 31,968 doses of ubrogepant.²⁸ Overall TEAEs were reported in 66% of patients receiving 50 mg and 73% receiving 100 mg. However, the majority of these events were mild to moderate in severity, with the most frequently reported being upper respiratory tract infection, nasopharyngitis, and nausea. Treatment-related TEAEs remained low across both dosing groups, occurring in 10.4% of patients receiving 50 mg and 10.5% receiving 100 mg. SAEs occurred in 2%-3% of patients, and treatment discontinuation due to adverse events was low (2.2% in the 50 mg group and 2.7% in the 100 mg group). No deaths occurred during the trial period. Real-world safety data from the VigiAccess and U.S. Food and Drug Administration's adverse event reporting system databases provide valuable post-marketing insights.³⁴ Through March 2024, 3,478 adverse event reports associated with ubrogepant were identified. The most frequently

reported adverse events in post-marketing surveillance included nausea (4.7%), fatigue (1.8%), vomiting (1.6%), and headache (0.8%). Hepatobiliary adverse events were rare, with no strong positive safety signal detected. Cardio-vascular events and severe hypersensitivity reactions were infrequent, corroborating the safety profile observed in controlled clinical trials.³⁴

4. Zavegepant

Given the recent approval of zavegepant, real-world data are currently scarce, and long-term safety assessments rely largely on findings from one open-label study.³⁵ The long-term safety of zavegepant nasal spray 10 mg for the acute treatment of migraine was evaluated in a 52-week, open-label, phase 2/3 study involving 603 adult participants. Over the study period, 21,052 migraine attacks were treated with 48,504 doses of zavegepant.³⁵ TEAEs were reported in 76.1% of patients, most commonly dysgeusia (39.1%), nasal discomfort (10.3%), COVID-19 infection (7.5%), nausea (6.1%), nasal congestion (5.5%), throat irritation (5.5%), and back pain (5.3%). Discontinuation due to adverse events occurred in 6.8% of participants, most frequently from dysgeusia (1.5%). Severe adverse events were reported in 3.6% and SAEs in 1.2%, none considered treatment-related. Alanine transaminase or aspartate transaminase elevations >3× upper limit of normal were observed in 2.6% of patients, but no Hy's law cases occurred. Importantly, no cases of medication-overuse headache, cardiovascular events, or suicidality-related adverse events were identified, supporting the favorable long-term safety profile of zavegepant.³⁵

SPECIAL ISSUES

1. Combination treatment with calcitonin gene-related peptide monoclonal antibodies

Recent evidence supports the feasibility and safety of combining gepants with CGRP monoclonal antibodies (mAbs). The COURAGE real-world observational study showed that ubrogepant, when used in patients already receiving an anti-CGRP mAb, provided meaningful pain relief and return to normal function, with high levels of patient satisfaction and treatment optimization, and without

new safety concerns.³⁶ In line with these findings, a retrospective analysis of 234 patients treated with rimegepant or ubrogepant in addition to CGRP mAbs reported that the combination was generally well tolerated, with only mild and transient adverse events that did not necessitate discontinuation.³⁷ These studies suggest that combination therapy targeting the CGRP pathway at different sites may be a safe and practical treatment strategy, although larger prospective randomized trials are still needed to confirm long-term safety and efficacy.

2. Efficacy in patients with prior failure of acute migraine therapies

Emerging data indicate that gepants remain effective for acute migraine relief in patients who have previously experienced insufficient response or tolerability with triptans. A pooled post hoc analysis of three phase 3 trials found that rimegepant 75 mg provided comparable rates of pain freedom and most bothersome symptom relief at 2 hours in participants with inadequate response to one or more triptans, current triptan users, and triptan-naive individuals (p≤0.013).³⁸ Moreover, long-term safety and preference for rimegepant were consistent across subgroups with a history of triptan discontinuation.³⁹ These findings underscore the clinical value of gepants as a well-tolerated and effective alternative for migraine patients with prior acute treatment failures. However, focused prospective studies in these refractory subpopulations remain warranted.

3. Effectiveness in traditionally suboptimal responders: medication-overuse headache and psychiatric comorbidity

Gepants appear to be particularly advantageous in traditionally challenging migraine subgroups, such as patients at risk of medication-overuse headache and those with psychiatric comorbidities. Crucially, long-term use of rimegepant (up to 52 weeks as needed [pro re nata]) has been associated with a sustained reduction in monthly migraine days without increases in monthly medication usage, suggesting a low risk of medication-overuse headache development. Regarding psychiatric comorbidities, adults with migraine and histories of anxiety and/or depression tolerated rimegepant well, demonstrating

favorable safety and tolerability profiles.⁴⁰ These findings support gepants as effective and well-tolerated options for migraine management in populations traditionally considered suboptimal responders, although further targeted prospective studies are warranted.

CURRENT EVIDENCE GAPS AND FUTURE DIRECTIONS

While gepants have established themselves as both effective and safe for long-term migraine management, several critical questions remain unresolved. First, comprehensive safety data extending beyond 1-2 years remain limited. The available safety evidence through 1 year of treatment is reassuring, demonstrating no significant organ toxicity or increased incidence of adverse events. However, migraine frequently represents a lifelong condition requiring decades of preventive intervention, and the consequences of sustained CGRP receptor blockade over such extended periods remain incompletely understood. Given CGRP's widespread expression across multiple organ systems including cardiovascular, gastrointestinal, and endocrine tissues prolonged receptor inhibition may reveal subtle physiological effects that are not apparent in shorter-term studies, necessitating continued long-term surveillance and research. 41 Future studies, including a 3-year atogepant safety trial (NCT04686136) will be essential for detecting any late-emerging adverse events.

Second, the cardiovascular safety profile of gepants in high-risk populations represents one of the most significant unresolved questions in migraine therapeutics. Most pivotal clinical trials systematically excluded patients with significant cardiovascular disease, creating a substantial evidence gap regarding gepant safety in individuals with active coronary artery disease, cerebrovascular conditions, or multiple vascular risk factors. This exclusion of high-risk cardiovascular patients from foundational studies means that formal safety evaluation in real-world populations with established vascular disease remains incomplete. Critical questions persist regarding long-term cardiovascular outcomes during gepant therapy, including potential effects on blood pressure regulation, risk of vascular events, and safety in patients with compromised cardiovascular reserve. Limited observational data suggest that gepants may be well-tolerated in patients with

cardiovascular risk factors.³¹ Long-term registries tracking vascular outcomes, blood pressure changes, and cardiac events during gepant therapy are essential to address this knowledge gap. In addition, it should be noted that most available long-term safety data are derived from open-label extension studies and industry-sponsored clinical trials, which may introduce a higher risk of bias compared with randomized controlled trials.

CONCLUSION

Gepants represent a significant therapeutic advancement in migraine management, offering robust efficacy for both acute and preventive treatment with an excellent safety profile. Clinical trials and real-world evidence consistently demonstrate that rimegepant, ubrogepant, atogepant, and zavegepant are well-tolerated across diverse patient populations, avoiding the cardiovascular contraindications associated with traditional therapies. The available safety data support sustained therapeutic benefit with minimal long-term concerns, enabling patients to achieve improved quality of life even with extended use. As clinical experience continues to expand, ongoing pharmacovigilance remains essential to monitor for rare or delayed adverse events and ensure the continued safety of this promising therapeutic class.

AVAILABILITY OF DATA AND MATERIAL

Not applicable.

AUTHOR CONTRIBUTIONS

Conceptualization: SC; Data curation: SC; Investigation: SC, KC; Writing-original draft: SC, KC; Writing-review & editing: SC, KC.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

FUNDING STATEMENT

Not applicable.

ACKNOWLEDGMENTS

Not applicable.

REFERENCES

- Karsan N, Goadsby PJ. Calcitonin gene-related peptide and migraine. Curr Opin Neurol 2015;28:250-254.
- Edvinsson L. Role of CGRP in Migraine. In: Brain SD, Geppetti P, editors. In: Calcitonin Gene-Related Peptide (CGRP) Mechanisms: Focus on Migraine. Springer International Publishing; 2019. p. 121-130.
- **3.** Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med 2011;13:e36.
- 4. Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J. CGRP may play a causative role in migraine. Cephalalgia 2002;22:54-61.
- Edvinsson L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br J Clin Pharmacol 2015;80:193-199.
- **6.** Negro A, Martelletti P. Gepants for the treatment of migraine. Expert Opin Investig Drugs 2019;28:555-567.
- 7. Woodhead JL, Siler SQ, Howell BA, Watkins PB, Conway C. Comparing the liver safety profiles of 4 next-generation CGRP receptor antagonists to the hepatotoxic CGRP inhibitor telcagepant using quantitative systems toxicology modeling. Toxicol Sci 2022;188:108-116.
- **8.** Amin AM, Abbas A, Amer SA, et al. Does atogepant offer a safe and efficacious option for episodic migraine prophylaxis? A systematic review and meta-analysis. Headache Pain Res 2025;26:21-37.
- **9.** Voss T, Lipton RB, Dodick DW, et al. A phase IIb randomized, double-blind, placebo-controlled trial of ubrogepant for the acute treatment of migraine. Cephalalgia 2016;36:887-898.
- 10. Scott LJ. Ubrogepant: first approval. Drugs 2020;80:323-328.
- 11. Blair HA. Rimegepant: a review in the acute treatment and preventive treatment of migraine. CNS Drugs 2023;37:255-265.
- **12.** Croop R, Goadsby PJ, Stock DA, et al. Efficacy, safety, and tolerability of rimegepant orally disintegrating tablet for the acute treatment of migraine: a randomised, phase 3, double-blind, placebo-controlled trial. Lancet 2019;394:737-745.
- 13. Joyner KR, Morgan KW. Novel therapies in acute migraine management: small-molecule calcitonin gene-receptor antagonists and serotonin 1F receptor agonist. Ann Pharmacother

- 2021;55:745-759.
- **14.** Ailani J, Lipton RB, Goadsby PJ, et al. Atogepant for the preventive treatment of migraine. N Engl J Med 2021;385:695-706.
- Pozo-Rosich P, Ailani J, Ashina M, et al. Atogepant for the preventive treatment of chronic migraine (PROGRESS): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023;402:775-785.
- 16. Lipton RB, Croop R, Stock DA, et al. Safety, tolerability, and efficacy of zavegepant 10 mg nasal spray for the acute treatment of migraine in the USA: a phase 3, double-blind, randomised, placebo-controlled multicentre trial. Lancet Neurol 2023;22:209-217.
- Johnston K, Harris L, Powell L, et al. Monthly migraine days, tablet utilization, and quality of life associated with Rimegepant post hoc results from an open label safety study (BHV3000-201). J Headache Pain 2022;23:10.
- 18. Kudrow D, Croop RS, Thiry A, Lipton RB. A 52-week open-label extension study to evaluate the safety and efficacy of oral rimegepant for the preventive treatment of migraine. Headache 2025 Jun 30 [Epub]. https://doi.org/10.1111/head.15002
- **19.** Croop R, Ailani J, Kudrow D, et al. Effects of rimegepant 75 mg on monthly migraine days: a 52-week, open-label extension study (P10-12.010). Neurology 2023;100:1674.
- **20.** Johnston KM, L'Italien G, Popoff E, et al. Mapping migraine-specific quality of life to health state utilities in patients receiving rimegepant. Adv Ther 2021;38:5209-5220.
- **21.** Croop R, Berman G, Kudrow D, et al. A multicenter, open-label long-term safety study of rimegepant for the acute treatment of migraine. Cephalalgia 2024;44:3331024241232944.
- 22. Iannone LF, Vaghi G, Sebastianelli G, et al. Effectiveness and tolerability of rimegepant in the acute treatment of migraine: a real-world, prospective, multicentric study (GAINER study). J Headache Pain 2025;26:4.
- 23. Goadsby PJ, Dodick DW, Ailani J, et al. Safety, tolerability, and efficacy of orally administered atogepant for the prevention of episodic migraine in adults: a double-blind, randomised phase 2b/3 trial. Lancet Neurol 2020;19:727-737.
- 24. Ashina M, Tepper SJ, Reuter U, et al. Once-daily oral atogepant for the long-term preventive treatment of migraine: findings from a multicenter, randomized, open-label, phase 3 trial. Headache 2023;63:79-88.
- 25. Lipton RB, Halker Singh RB, Mechtler L, et al. Patient-reported migraine-specific quality of life, activity impairment and headache impact with once-daily atogepant for preventive treatment of migraine in a randomized, 52-week trial. Cephalalgia

- 2023:51:3331024231190296.
- **26.** Dodick DW, Lipton RB, Ailani J, et al. Ubrogepant for the treatment of migraine. N Engl J Med 2019;381:2230-2241.
- 27. Lipton RB, Dodick DW, Ailani J, et al. Effect of ubrogepant vs placebo on pain and the most bothersome associated symptom in the acute treatment of migraine: the ACHIEVE II randomized clinical trial. JAMA 2019;322:1887-1898.
- 28. Ailani J, Lipton RB, Hutchinson S, et al. Long-term safety evaluation of ubrogepant for the acute treatment of migraine: phase 3, randomized, 52-week extension trial. Headache 2020;60:141-152.
- **29.** Trugman JM, Ailani J, Hutchinson S, et al. Efficacy is maintained with long-term intermittent use of ubrogepant for the acute treatment of migraine (111). Neurology 2020;94:111.
- **30.** Lipton RB, Dodick DW, Goadsby PJ, et al. Within-person analysis of ubrogepant treatment of mild versus moderate-severe headache pain during a phase 3 long-term safety extension trial (S31.006). Neurology 2022;98:167.
- **31.** True D, Mullin K, Croop R. Safety of rimegepant in adults with migraine and cardiovascular risk factors: analysis of a multicenter, long-term, open-label study. Pain Ther 2024;13:1203-1218.
- **32.** Berman G, Thiry A, Croop R. Safety of rimegepant in patients using preventive migraine medications: a subgroup analysis of a long-term, open-label study conducted in the United States. J Pain Res 2024;17:1805-1814.
- **33.** Klein BC, Miceli R, Severt L, et al. Safety and tolerability results of atogepant for the preventive treatment of episodic migraine from a 40-week, open-label multicenter extension of the phase 3 ADVANCE trial. Cephalalgia 2023;43:3331024221128250.
- **34.** Liang Q, Liao X, Wu H, Huang Y, Liang T, Li H. Real-world study of adverse events associated with gepant use in migraine treatment based on the VigiAccess and U.S. Food and Drug Administration's adverse event reporting system databases. Front Pharmacol 2024;15:1431562.
- **35.** Mullin K, Croop R, Mosher L, Fullerton T, Madonia J, Lipton RB. Long-term safety of zavegepant nasal spray for the acute treatment of migraine: a phase 2/3 open-label study. Cephalalgia 2024;44:3331024241259456.
- **36.** Lipton RB, Contreras-De Lama J, Serrano D, et al. Real-world use of ubrogepant as acute treatment for migraine with an anti-calcitonin gene-related peptide monoclonal antibody: results from COURAGE. Neurol Ther 2024;13:69-83.
- **37.** Alsaadi T, Suliman R, Santos V, et al. Safety and tolerability of combining CGRP monoclonal antibodies with gepants in

- patients with migraine: a retrospective study. Neurol Ther 2024;13:465-473.
- **38.** Lipton RB, Blumenfeld A, Jensen CM, et al. Efficacy of rimegepant for the acute treatment of migraine based on triptan treatment experience: pooled results from three phase 3 randomized clinical trials. Cephalalgia 2023;43:3331024221141686.
- **39.** Ailani J, Pavlovic J, Pixton GC, Fullerton T. Rimegepant safety and patient-reported outcomes among triptan-naïve, triptan-using, and triptan-failure participants: subgroup
- analysis of an open-label, multicenter study. Cephalalgia 2025;45:3331024251343309.
- **40.** Kudrow D, Hutchinson S, Pixton GC, Fullerton T. Safety of rimegepant in adults with migraine and anxiety, depression, or using antidepressants: analysis of a multicenter, long-term, open-label study. Pain Ther 2025;14:237-255.
- **41.** Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023;103:1565-1644.

Review Article

Headache Pain Res 2025;26(3):193-199 pISSN: 3022-9057 • eISSN: 3022-4764 https://doi.org/10.62087/hpr.2025.0016

Headache as a Somatic Symptom in Pediatrics: Diagnosis and Integrated Management

Hye Eun Kwon[®]

Department of Pediatrics, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea

Abstract

Somatization—the expression of psychological distress through physical symptoms—presents a frequent and complex challenge in pediatric practice. Headache and dizziness are among its most common manifestations. This review addresses the diagnostic challenge of determining whether these symptoms indicate a primary headache disorder or reflect somatic symptom presentations. The difficulty becomes particularly evident when conditions manifest in severe or persistent forms, such as chronic primary headache (CPH) and somatic symptom and related disorders (SSRD), where clinical overlap is considerable and coexistence may occur. We first explore the shared pathophysiological mechanisms, emphasizing central sensitization as a unifying process. We then propose a clinical framework for differential diagnosis that includes careful evaluation of predisposing risk factors and contrasts the defined diagnostic criteria of CPH with the maladaptive psychological responses frequently observed in SSRD. Management strategies diverge pharmacologically but converge on key non-pharmacological approaches. For primary headaches, pharmacotherapy is primarily used for prophylaxis, although its efficacy remains limited in pediatric trials. In contrast, for somatic presentations, medication typically serves as an adjunctive treatment targeting comorbidities, while psychotherapy (particularly cognitive behavioral therapy [CBT]) functions as the cornerstone of care. Non-pharmacological interventions such as CBT and biofeedback are essential for improving functioning across both conditions. Therefore, effective management relies on a framework of comprehensive psychoeducation, holistic assessment, and integrated interdisciplinary care.

Keywords: Dizziness, Headache, Somatoform disorders

INTRODUCTION

Somatization, defined as the expression of psychological distress through physical symptoms, is a frequent and complex challenge in pediatric clinical practice. ¹ Instead

of verbalizing emotions such as anxiety or stress, children and adolescents may present with significant somatic complaints. Importantly, these symptoms are not feigned; the suffering is genuine and can cause substantial functional impairment, including chronic school absenteeism.²

Received: September 9, 2025; Revised: October 2, 2025; Accepted: October 2, 2025

Correspondence: Hye Eun Kwon, M.D.

Department of Pediatrics, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, 25 Simgok-ro 100beon-gil, Seo-gu, Incheon 22711, Republic of Korea

Tel: +82-32-290-2716, Fax: +82-32-290-3879, E-mail: romani33@hanmail.net

© 2025 The Korean Headache Society

© This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

The tendency toward somatic expression is often shaped by a confluence of factors, ranging from individual psychological vulnerabilities and prior life experiences to socio-environmental pressures like family stress, highly competitive environments, or cultural contexts that discourage emotional disclosure.³

These manifestations exist along a spectrum of severity. At one end are transient functional symptoms that resolve spontaneously with minimal disruption; at the other are persistent, disabling presentations that may fulfill the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) criteria for somatic symptom and related disorders (SSRD). This spectrum naturally provokes varying levels of parental concern and requires tailored clinical intervention. Headache and dizziness are among the most common medically unexplained symptoms in this population. Their considerable clinical overlap with primary headache disorders creates significant diagnostic challenges—particularly in children, whose headache characteristics are often less distinct than in adults.

Prevalence data highlight the scale of these conditions: while chronic primary headache (CPH) affects approximately 1%–2% of adolescents, broader functional somatic symptoms occur in up to one in four youths. To clarify this clinical context and severity spectrum, Table 1 provides a comparative summary of the key characteristics and functional impact associated with both conditions in the pediatric population.

Because these symptoms frequently present first to non-psychiatric services, insufficient recognition at the initial encounter may result in extensive diagnostic testing and medication-centered management strategies that are often ineffective. Understanding the interplay between primary headache disorders and somatic symptom presentations is therefore essential for all clinicians caring for pediatric patients.

Therefore, a critical need exists for the integration of the primary headache and SSRD frameworks, which specifically emphasizes shared central sensitization (CS) as a unifying mechanism. This transdiagnostic perspective facilitates clearer clinical differentiation and underscores the necessity of integrated care models.

Moreover, these cases frequently strain the physician-family relationship, underscoring the need for clear communication and integrated care. Against this background, the present review aims to assist clinicians by examining shared pathophysiological mechanisms, identifying risk factors for somatization in youth, differentiating between CPH and somatic symptom presentations, and outlining management strategies, highlighting differences in pharmacological approaches and similarities in non-pharmacological ones.

A SHARED PATHOPHYSIOLOGY: THE SENSITIZED BRAIN

Building on the clinical overlap described in the introduction, a substantial pathophysiological convergence exists between the chronification of primary headaches and SSRD. CS has emerged as the key unifying mechanism linking these conditions. ^{10,11} CS reflects a state of amplified neural signaling within the central nervous system, producing heightened pain sensitivity and characteristic features such as allodynia and hyperalgesia. ¹⁰ Notably, migraine—a prototypical primary headache disorder—shares this sensitization pathway with functional somatic syndromes and psychiatric comorbidities, underscoring its transdiagnostic importance. ¹¹

Table 1. Comparative summary of chronic primary headache and broader functional somatic symptoms in pediatric patients

Feature	Chronic primary headache	Broader functional somatic symptoms
Prevalence	Approximately 1%-2% of adolescents	Up to one in four youths
Onset age	Can occur across all age groups	Can occur across all age groups
Prototypical conditions	Chronic migraine; chronic tension-type headache; new daily persistent headache	A clinical spectrum, ranging from transient functional symptoms with minimal disruption to persistent, dis- abling presentations that qualify as somatic symptom and related disorders
Functional impact	Restriction of daily activities	Varies widely by specific diagnosis, ranging from mild to severe
Initial clinical contact	Pediatric neurology settings	Often presents first to non-psychiatric services (e.g., general pediatric clinics or pediatric neurology settings)

Children and adolescents may be particularly susceptible to maladaptive sensitization due to their neuroplasticity and ongoing brain maturation. Pediatric neuroimaging studies reveal altered connectivity within pain-related networks and disrupted resting-state activity, suggesting that the developing brain is vulnerable to long-term functional reorganization. Page 25.

Biopsychosocial factors further shape this sensitized state. Childhood maltreatment and early life stress have been shown to program lasting dysregulation of the hypothalamic-pituitary-adrenal axis and to trigger low-grade systemic inflammation, thereby increasing vulnerability to chronic pain conditions. ^{13,14} In adolescence, the surge of gonadal hormones contributes additional instability by reorganizing neural circuits that govern both emotion regulation and nociception. ¹⁵

At the systems level, convergent processing of emotional and sensory signals in the anterior cingulate cortex and insula provides a structural substrate for cross-sensitization. During neurodevelopment, these circuits remain plastic, and persistent activation by psychological distress can more readily "spill over" into adjacent pain-processing networks, reinforcing a cycle of symptom chronification. ¹⁶

For instance, when prolonged psychological distress is processed in key emotional areas like the insula, the resulting chronic activation allows the emotional signal to "spill over" into adjacent pain-processing networks. This crossover leads to the misinterpretation of harmless inputs—such as minor muscle tension or light touch—causing them to be experienced as severe pain signals and ultimately manifesting as increased headache frequency or severity.

Taken together, these findings suggest that pediatric pain syndromes are rooted in CS within the developing nervous system, rather than being purely psychogenic.

RISK FACTORS FOR SOMATIZATION IN YOUTH

The emergence of somatic symptoms in children and adolescents reflects the interplay of biopsychosocial risk factors. At the individual level, vulnerability may arise from psychological predispositions such as high anxiety sensitivity, neuroticism, and perfectionism, some of which have a genetic basis. ^{17,18} Comorbid psychiatric conditions—especially anxiety and depressive disorders—are also strong

predictors, as is alexithymia, the difficulty in identifying and describing emotions.¹⁹

These risks can be amplified by previous adverse experiences, including serious medical illness, trauma, or neglect, which heighten sensitivity to bodily sensations.²⁰

Socio-environmental stressors further shape these predispositions. Within the family, parental modeling of illness behavior, high level of family stress, and overprotective parenting exert strong influence. In schools, academic and social pressures may add to the burden, while cultural norms that discourage emotional expression can further reinforce somatic tendencies.

Once established, symptoms persist through reinforcing mechanisms, as the sick role is maintained by secondary gains like increased attention or relief from stressors.²⁰

CLINICAL DIFFERENTIATION OF PRIMARY HEADACHE DISORDERS AND HEADACHE AS A SOMATIC SYMPTOM

Differentiating between primary headache disorders and headache presenting as a somatic symptom is a significant clinical challenge, given their considerable phenomenological and pathophysiological overlap.

The diagnosis of CPH—including chronic migraine, chronic tension-type headache, new daily persistent headache (NDPH), and medication overuse headache (MOH)—is established according to the objective criteria outlined in the International Classification of Headache Disorders, 3rd edition (ICHD-3). For instance, chronic migraine is defined by headache on \geq 15 days per month, with migrainous features on at least 8 of those days. Clinically, patients with SSRD may present with headache patterns that closely mimic these primary disorders. In particular, the abrupt and unremitting pain of NDPH or the analgesic-driven progression into MOH may resemble the headache presentations seen in SSRD.

When diagnosing headache as a manifestation of SSRD, the diagnosis is not based on specific headache features—which are often vague, atypical, and notably not outlined in the DSM-5 criteria—but instead relies on the patient's excessive and maladaptive psychological responses as defined by those criteria. ^{5,25} Clinically, SSRD expresses itself in ways that significantly amplify the headache experience, such as pain amplification, chronic, high-level health

anxiety centered on the head (e.g., fear of tumor despite clear scans), or functional neurological presentations like unexplained neurological deficits (e.g., transient blindness or severe imbalance during a headache). Diagnostic clues include disproportionate thoughts, emotions, and behaviors related to the headache, such as pain catastrophizing and significant functional impairment. Patients with SSRD typically emphasize these maladaptive responses—particularly the disabling impact of symptoms and associated emotional distress.²⁶

Notably, not all patients express distress overtly; many exhibit alexithymia, a difficulty in recognizing and articulating emotions, which may result in emotional numbing or poor awareness of discomfort. Such presentations require careful clinical attention, as they can obscure the psychological drivers of symptoms. Additional indicators include the presence of multiple medically unexplained symptoms beyond headache and a tendency toward "symptom shifting." The essential differences in the diagnostic focus between CPH and SSRD are summarized in Table 2.

Diagnostic clarity becomes especially challenging when CPH and SSRD coexist. This comorbidity may create a vicious cycle of mutual reinforcement, whereby psychological distress lowers the pain threshold while chronic pain exacerbates psychological symptoms. This complexity is further compounded by differences in diagnostic frameworks (DSM-5 for SSRD versus ICHD-3 for "headache attributed to a psychiatric disorder"), underscoring the im-

portance of interdisciplinary awareness. Because patients typically present with headache as the primary complaint, the underlying psychiatric contribution may easily be overlooked unless specifically considered.²⁸

PHARMACOLOGICAL DIVERGENCE AND NON-PHARMACOLOGICAL CONVERGENCE

Although pharmacological approaches differ between primary headache disorders and somatic symptom presentations, there is clear convergence in the value of non-pharmacological interventions. Across both conditions, cognitive behavioral therapy (CBT) has consistently demonstrated efficacy in reducing symptom burden, functional impairment, and healthcare utilization by reframing maladaptive thoughts and enhancing coping strategies. ^{29,30} Biofeedback, by providing real-time awareness of physiological processes, has likewise been reported to promote self-regulation and reduce symptom frequency and intensity. ^{31,32}

The primary distinction lies in pharmacological strategy. Treatment of primary headache disorders typically emphasizes prophylaxis with agents such as anticonvulsants (e.g., topiramate) or beta-blockers (e.g., propranolol) to decrease headache frequency and severity. However, in pediatric and adolescent populations, evidence indicates that the efficacy of pharmacological prophylaxis is limited. The Childhood and Adolescent Migraine Prevention trial demonstrated that neither topiramate nor amitriptyline was superior to placebo in reducing headache frequency,

Table 2. Key differences between chronic primary headache and somatic symptom and related disorders

Feature	Chronic primary headache	Somatic symptom and related disorders
Diagnostic criteria	Classification of headache types using ICHD-3 criteria	To classify the psychological and behavioral impact of the symptoms on the patient's life according to DSM-5
Subtypes	Chronic migraine; chronic tension-type headache; new daily persistent headache	Somatic symptom disorder; illness anxiety disorder; conversion disorder; factitious disorder
Core diagnostic focus	Specific symptom features (frequency, duration, quality, associated symptoms)	Excessive, maladaptive psychological response to physical symptoms and associated distress/ dysfunction
Symptom requirements	Headache occurring on ≥15 days/mo for >3 months (for chronic forms), fulfilling criteria for migraine or tension-type headache phenotype	One or more somatic symptoms that are distressing or result in significant disruption of daily life (e.g., headache, abdominal pain, fatigue)
Psychological component	Not required for diagnosis (may be an associated comorbidity)	Required for diagnosis
Clinical goal	Reduction in headache frequency and intensity, and functional recovery	Reduction in health-related anxiety and excessive behaviors, improvement in patient coping skills, and concurrent mental health treatment

ICHD-3, International Classification of Headache Disorders, 3rd edition; DSM-5, Diagnostic and Statistical Manual of Mental Disorders, 5th Edition.

underscoring the limitations of medication-based strategies in this age group.³⁴ This limitation highlights that a poor response to medication should prompt clinicians to look beyond purely pharmacological strategies, considering both the possibility of headache as a somatic expression and the integration of non-pharmacological therapies.

By contrast, the cornerstone of treatment for somatic symptom presentations is psychotherapy—most notably CBT—which prioritizes functional improvement rather than complete symptom elimination. Pharmacotherapy, most often with selective serotonin reuptake inhibitors or serotonin–norepinephrine reuptake inhibitors, is typically adjunctive and directed toward comorbid anxiety or depressive disorders.³⁵

Effective management strategies are best supported by the following principles:^{1,36}

- Providing comprehensive psychoeducation: Clear communication that enhances patient and family understanding of the diagnosis is fundamental for improving adherence and achieving long-term outcomes.
- Conducting holistic assessment: Clinicians must extend evaluation beyond the presenting complaint to identify comorbid medical or psychiatric conditions that may require additional support.
- Fostering interdisciplinary collaboration: Optimal care depends on coordinated input from neurologists, psychiatrists, psychologists, and allied health professionals. Importantly, a patient's differing responses to various interventions may itself provide valuable diagnostic insight.

CONCLUSION

Headache and dizziness in children often blur the distinction between primary headache disorders and somatic symptom presentations. CS offers a shared neurobiological framework, yet primary headaches are defined by ICHD-3 criteria, whereas somatic symptom disorders are characterized by maladaptive psychological responses, frequently complicated by alexithymia and psychiatric comorbidities.

Management diverges in pharmacological strategies but converges in non-pharmacological approaches. Pediatric trials demonstrating the limited efficacy of preventive medications underscore the importance of psychotherapy and integrated, function-oriented care. Effective management may therefore require early recognition of somatic presentations, avoidance of unnecessary investigations, and interdisciplinary collaboration. Future research should focus on refining diagnostic clarity and treatment efficacy by prioritizing several key areas. Specifically, research efforts should be directed toward the validation of pediatric-specific diagnostic tools that consider both ICHD-3 and DSM-5 criteria, conducting longitudinal studies to map the trajectory and prognosis of somatic symptom presentations, and performing rigorous evaluation of integrated programs to establish best practices for holistic care and optimized outcomes for affected youth.

AVAILABILITY OF DATA AND MATERIAL

The data presented in this study are available upon reasonable request from the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization: HEK; Writing-original draft: HEK; Writing-review & editing: HEK.

CONFLICT OF INTEREST

Hye Eun Kwon is the Editor of *Headache and Pain Research* and was not involved in the review process of this article. The author has no other conflicts of interest to declare.

FUNDING STATEMENT

Not applicable.

ACKNOWLEDGMENTS

Not applicable.

REFERENCES

- **1.** Campo JV, Fritz G. A management model for pediatric somatization. Psychosomatics 2001;42:467-476.
- **2.** Haller H, Cramer H, Lauche R, Dobos G. Somatoform disorders and medically unexplained symptoms in primary care. Dtsch Arztebl Int 2015;112:279-287.
- 3. Ryder AG, Yang J, Zhu X, et al. The cultural shaping of depres-

- sion: somatic symptoms in China, psychological symptoms in North America? J Abnorm Psychol 2008;117:300-313.
- Rask CU, Olsen EM, Elberling H, et al. Functional somatic symptoms and associated impairment in 5-7-year-old children: the Copenhagen Child Cohort 2000. Eur J Epidemiol 2009;24:625-634.
- American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Publishing; 2013.
- **6.** Straube A, Andreou A. Primary headaches during lifespan. J Headache Pain 2019:20:35.
- Laurell K, Larsson B, Eeg-Olofsson O. Prevalence of headache in Swedish schoolchildren, with a focus on tension-type headache. Cephalalgia 2004;24:380-388.
- **8.** Malas N, Ortiz-Aguayo R, Giles L, Ibeziako P. Pediatric somatic symptom disorders. Curr Psychiatry Rep 2017;19:11.
- Bujoreanu S, Randall E, Thomson K, Ibeziako P. Characteristics of medically hospitalized pediatric patients with somatoform diagnoses. Hosp Pediatr 2014;4:283-290.
- **10.** Suzuki K, Suzuki S, Shiina T, Kobayashi S, Hirata K. Central sensitization in migraine: a narrative review. J Pain Res 2022;15:2673-2682.
- 11. Grassini S, Nordin S. Comorbidity in migraine with functional somatic syndromes, psychiatric disorders and inflammatory diseases: a matter of central sensitization? Behav Med 2017;43:91-99.
- 12. Bhatt RR, Gupta A, Mayer EA, Zeltzer LK. Chronic pain in children: structural and resting-state functional brain imaging within a developmental perspective. Pediatr Res 2020;88:840-849.
- **13.** Danese A, Pariante CM, Caspi A, Taylor A, Poulton R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A 2007;104:1319-1324.
- Heim C, Newport DJ, Bonsall R, Miller AH, Nemeroff CB. Altered pituitary-adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. Am J Psychiatry 2001;158:575-581.
- **15.** Sisk CL, Zehr JL. Pubertal hormones organize the adolescent brain and behavior. Front Neuroendocrinol 2005;26:163-174.
- **16.** Zhang S, Ning Y, Yang Y, et al. Decoding pain chronification: mechanisms of the acute-to-chronic transition. Front Mol Neurosci 2025;18:1596367.
- 17. Hansell NK, Wright MJ, Medland SE, et al. Genetic co-morbidity between neuroticism, anxiety/depression and somatic distress in a population sample of adolescent and young adult twins. Psychol Med 2012;42:1249-1260.

- **18.** Bonvanie IJ, Rosmalen JG, van Rhede van der Kloot CM, Oldehinkel AJ, Janssens KA. Short report: functional somatic symptoms are associated with perfectionism in adolescents. J Psychosom Res 2015;79:328-330.
- **19.** Natalucci G, Faedda N, Calderoni D, Cerutti R, Verdecchia P, Guidetti V. Headache and alexithymia in children and adolescents: what is the connection? Front Psychol 2018;9:48.
- **20.** Elliott L, Thompson KA, Fobian AD. A systematic review of somatic symptoms in children with a chronically ill family member. Psychosom Med 2020;82:366-376.
- **21.** van Tilburg MA, Levy RL, Walker LS, et al. Psychosocial mechanisms for the transmission of somatic symptoms from parents to children. World J Gastroenterol 2015;21:5532-5541.
- 22. Choi E, Chentsova-Dutton Y, Parrott WG. The effectiveness of somatization in communicating distress in Korean and American cultural contexts. Front Psychol 2016;7:383.
- **23.** Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018;38:1-211.
- 24. Uniyal R, Chhirolya R, Tripathi A, Mishra P, Paliwal VK. Is new daily persistent headache a fallout of somatization? An observational study. Neurol Sci 2022;43:541-547.
- 25. Rief W, Martin A. How to use the new DSM-5 somatic symptom disorder diagnosis in research and practice: a critical evaluation and a proposal for modifications. Annu Rev Clin Psychol 2014;10:339-367.
- 26. Fink P, Schröder A. One single diagnosis, bodily distress syndrome, succeeded to capture 10 diagnostic categories of functional somatic syndromes and somatoform disorders. J Psychosom Res 2010;68:415-426.
- 27. Kroenke K, Wu J, Bair MJ, Krebs EE, Damush TM, Tu W. Reciprocal relationship between pain and depression: a 12-month longitudinal analysis in primary care. J Pain 2011;12:964-973.
- **28.** Smitherman TA, Baskin SM. Headache secondary to psychiatric disorders. Curr Pain Headache Rep 2008;12:305-310.
- 29. Kroon Van Diest AM, Powers SW. Cognitive behavioral therapy for pediatric headache and migraine: why to prescribe and what new research is critical for advancing integrated biobehavioral care. Headache 2019;59:289-297.
- **30.** Berezowski L, Ludwig L, Martin A, Löwe B, Shedden-Mora MC. Early psychological interventions for somatic symptom disorder and functional somatic syndromes: a systematic review and meta-analysis. Psychosom Med 2022;84:325-338.
- **31.** Blume HK, Brockman LN, Breuner CC. Biofeedback therapy for pediatric headache: factors associated with response. Headache

- 2012;52:1377-1386.
- **32.** Schmidt K, Barac-Dammeyer D, Kowalski A, et al. Implementing biofeedback treatment in a psychosomatic-psychotherapeutic inpatient unit: a mixed methods evaluation of acceptance, satisfaction, and feasibility. Front Psychiatry 2023;14:1140880.
- **33.** Wander A, Meena AK, Choudhary PK, Peer S, Singh R. Pediatric headache: a comprehensive review. Ann Child Neurol 2024;32:207-218.
- 34. Powers SW, Coffey CS, Chamberlin LA, et al. Trial of amitrip-

- tyline, topiramate, and placebo for pediatric migraine. N Engl J Med 2017;376:115-124.
- **35.** Somashekar B, Jainer A, Wuntakal B. Psychopharmacotherapy of somatic symptoms disorders. Int Rev Psychiatry 2013;25:107-115.
- **36.** Ruth Saunders N, Kawamura A, MacLeod O, Nieuwesteeg A, De Souza C. Somatic symptom and related disorders: guidance on assessment and management for paediatric health care providers. Paediatr Child Health 2025;30:331-337.

Review Article

Headache Pain Res 2025;26(3):200-208 pISSN: 3022-9057 • eISSN: 3022-4764 https://doi.org/10.62087/hpr.2025.0018

Interictal Burden of Migraine: A Narrative Review

Soo-Kyoung Kim^{1,2}, Todd J. Schwedt³

- ¹Department of Neurology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
- ²Institute of Medical Science, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
- ³Headache Division, Department of Neurology, Mayo Clinic, Phoenix, AZ, USA

Abstract

Migraine is a chronic neurological disorder associated with substantial disability and societal costs. Traditionally, research and clinical care have focused on the ictal phase, characterized by headache and accompanying symptoms. However, growing evidence suggests that a considerable portion of migraine-related disability occurs between attacks, known as the interictal burden (IIB). IIB encompasses a wide spectrum of cognitive, emotional, sensory, and functional impairments that persist during headache-free periods, including fatigue, allodynia, photophobia, cognitive dysfunction, anticipatory anxiety, and social withdrawal. These symptoms can markedly reduce quality of life, work productivity, and family functioning, even in individuals with infrequent attacks. In a descriptive survey of 506 migraine respondents, 67% experienced severe IIB. The effects of IIB extend beyond patients themselves, contributing to presenteeism in the workplace and imposing emotional and logistical strain within families. Several instruments, including the Migraine Interictal Burden Scale (MIBS-4), Migraine-Specific Quality of Life Questionnaire (MSQ v2.1), Headache Impact Test (HIT-6), and Migraine Disability Assessment (MIDAS), have been employed to assess different dimensions of IIB. Nonetheless, no single comprehensive and standardized tool fully captures the multidimensional nature of IIB. Recognizing and addressing IIB is essential for delivering holistic, patient-centered migraine care. Future research should focus on developing validated assessment instruments and incorporating IIB measures into clinical trials and routine practice to better understand and alleviate the hidden burden of migraine.

Keywords: Activities of daily living, Burden of illness, Disability evaluation, Migraine disorders, Quality of life

INTRODUCTION

Migraine is a disabling chronic neurological disease characterized by episodic attacks consisting of headache and non-pain symptoms such as nausea, sensory hypersensitivities, mood changes, and cognitive dysfunction. ^{1,2} Previous studies have demonstrated that migraine imposes

a substantial burden on patients, families, the workplace, and society.^{3,4} At the population level, "migraine-attributed burden" is defined as the sum of the negative impact of migraine on individuals with migraine plus the impact on people without migraine.⁵ Migraine most commonly occurs between the second and sixth decades of life, which are crucial years for education, career development, and

Received: September 14, 2025; Revised: October 2, 2025; Accepted: October 5, 2025

Correspondence: Todd J. Schwedt, M.D.

Headache Division, Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ 85054, USA Tel: +1-480-301-8000, Fax: +1-480-342-6546, E-mail: Schwedt.Todd@mayo.edu

© 2025 The Korean Headache Society

®This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

productivity. 6,7 Understanding the magnitude of and contributors to both ictal and interictal migraine burden is essential for accurately assessing the true impact of migraine and developing targeted interventions to reduce it.^{8,9} While its burden has traditionally been quantified based on ictal features such as attack frequency, severity, and duration, a growing body of research emphasizes that migraine is not confined to the ictal phase. Interictal burden (IIB) refers to the constellation of symptoms and restrictions experienced between attacks, including sensory hypersensitivity, cognitive impairment, anticipatory anxiety, and impaired social and occupational functioning. 10 For this review, the interictal period is defined as a headache-free interval of at least 24 hours since the last migraine ictus, excluding prodromal and postdromal phases. Prior studies have adopted varying definitions. For example, Lampl et al. 11 described IIB as the "loss of health or wellbeing attributable to a headache disorder reportedly experienced while headache-free, affecting all areas of life on any day." Peng and May, 12 from a clinical perspective, characterized the interictal phase as the interval between two attacks during which patients are "usually relatively symptom free". Such heterogeneity in definitions may influence estimates of IIB, particularly in chronic migraine (CM) where headache-free days are scarce.

The objective of this narrative review is to provide an overview of IIB in migraine, focusing on its epidemiology, domains of impact, assessment tools, clinical implications, and future directions.

METHODS

This article was prepared as a narrative review to provide an overview of current knowledge on IIB in migraine. The review was structured and reported according to the SANRA (Scale for the Assessment of Narrative Review Articles) guidelines to ensure clarity, transparency, and scientific rigor.

We performed a literature search using MEDLINE (via PubMed) and Embase databases. The search covered the period from January 1, 2000 to September 1, 2025, with no geographic restrictions. The search strategy combined controlled vocabulary (MeSH/Emtree terms) and freetext keywords related to migraine and IIB. The core search string included terms such as: "migraine" OR "headache disorders" AND ("interictal burden" OR "interictal symp-

toms" OR "migraine burden" OR "anxiety" OR "cognitive impairment" OR "presenteeism" OR "quality of life").

Relevant literature was identified through the review of key published studies and large epidemiological projects as well as other peer-reviewed research articles and systematic reviews. Articles were selected for their relevance to the main themes of this review: (1) epidemiology of IIB, (2) domains of impact (cognitive, psychological, sensory, social, and functional), (3) assessment tools used to measure IIB, and (4) clinical and societal implications.

Inclusion criteria were peer-reviewed English-language publications that reported data on people with migraine, including both episodic and CM, and addressed at least one of the themes above. Exclusion criteria included abstracts without full text, case reports with fewer than 10 participants, and studies unrelated to migraine or IIB.

As this was a narrative review, a formal risk-of-bias tool was not applied. However, study design and methodological quality were considered when interpreting findings, and greater weight was given to systematic reviews and large observational studies.

1. Epidemiology of interictal burden

Epidemiological surveys demonstrate that IIB is common and clinically meaningful. The OVERCOME (Japan) study reported that approximately 41.5% of respondents with migraine had moderate-to-severe IIB, and a comparable proportion (53.8%) was seen in OVERCOME (US). Similarly, European data from the Eurolight study revealed that 26.0% of individuals with migraine reported IIB, including 10.6% with interictal anxiety and 14.8% with avoidance behaviors. CM is consistently associated with higher interictal impairment than episodic migraine.

2. Domains of interictal burden

IIB can be categorized into several key domains, each contributing to a patient's overall disability and reduced quality of life (QoL) (Table 1).

1) Cognitive and behavioral dysfunction

Many patients report cognitive impairments during the interictal phase, often described as "brain fog." These difficulties may include reduced selective attention and defi-

Table 1. Domains of interictal burden

Domain	Description	Symptoms
Cognitive dysfunction	Cognitive inefficiency persisting between attacks	"Brain fog," poor concentration, reduced attention, impaired memory, executive dysfunction
Psychological distress	Anticipatory anxiety and emotional comorbidities	Anxiety, depression, avoidance behaviors, fear of next attack
Sensory symptoms	Persistent sensory hypersensitivity outside ictal periods	Allodynia, photophobia, phonophobia, osmophobia, vestibular disturbance
Social stigma & isolation	Impact of misunderstanding migraine as "just a headache"	Concealment, social withdrawal, delayed diagnosis, underreporting
Work productivity loss	Limitations in occupational performance between attacks	Presenteeism, reduced efficiency, economic cost
Family burden	Effect on family functioning and relationships	Reduced participation in family activities, parental strain, adolescent stress

cits in executive function, impacting the ability to concentrate, remember, and perform complex tasks. ¹⁴ One study found evidence of mild executive dysfunction in patients with migraine without aura during the interictal period. ¹⁵ Patients with CM demonstrate poorer frontal lobe-related cognitive performance, especially in executive function, compared with episodic migraine and healthy controls. Deficits in executive tasks such as the Trail Making Test and Wisconsin Card Sorting Test have been documented in CM, and higher migraine severity has been associated with reduced attention and slower processing speed. ¹⁵⁻¹⁸

2) Psychological distress

The constant threat of an impending attack often leads to anticipatory anxiety, which may result in avoidance behaviors that limit daily activities and affect the ability to make plans or commitments. Anxiety and depression may be associated with more severe migraine disease. In the Nord-Trøndelag Health Study (HUNT) cohort study, anxiety was associated with a two-fold increased risk and depression with a 2.6-fold increased risk of developing medication overuse headache (MOH). Depression is associated with a higher risk of transformation from episodic to CM, the risk of which is greatest among those with more severe depression. Depression.

3) Social stigma and isolation

Migraine is frequently misunderstood as a simple headache, leading to social stigma. Patients may hide their condition from colleagues, friends, and family, resulting in social isolation and feelings of being misunderstood.²¹ Stigma also contributes to underreporting and delays in diagnosis, while reinforcing avoidance behaviors. In the OVERCOME (US) cohort, 45.1% of migraine patients reported ever hesitating to seek care, with hiding migraine and perceived stigma being among the strongest associated factors. Higher stigma scores were strongly associated with greater disability, poorer QoL, and reduced care seeking. Over time, these dynamics can affect career advancement, education, and family planning. Additionally, stigma may discourage patients from seeking treatment, exacerbating the emotional burden and resulting in unnecessary suffering from untreated migraine. To better quantify stigma, the migraine-related stigma (MiRS) questionnaire was recently developed and validated using OVERCOME data, providing a standardized tool for measuring perceived stigma and its clinical impact.

4) Persistent non-pain symptoms

Many symptoms associated with the ictal phase—such as allodynia, photophobia, phonophobia, osmophobia, vestibular disturbances and motion sickness—can persist into the interictal phase at lower intensity. In the OVERCOME (US) cohort, 31.7% of participants reported frequent interictal symptoms such as sensitivity to light or sound, cognitive difficulties, and fatigue, even on non-headache days. ^{8,23} Neuroimaging studies, including functional magnetic resonance imaging and structural analyses, demonstrate persistent cortical hyperexcitability and alterations in regional brain structure in pain-processing regions and regions responsible for processing other sensory stimuli, supporting a neurobiological basis for these ongoing symptoms. ^{9,27,28}

5) Work and productivity loss

Workplace productivity is profoundly affected by migraine, especially through presenteeism—working while symptomatic but at reduced capacity. One study estimated that 89% of total productivity loss due to migraine was attributable to presenteeism rather than absenteeism.²⁹ In the Japanese OVERCOME cohort, presenteeism accounted for a substantial portion of work time impairment—up to 49.9% of work hours-while absenteeism rates remained low (3.8%-6.2%). This suggests that presenteeism-related costs far exceed those from absence in this population. Although direct data linking interictal fatigue or reduced vitality to presenteeism costs in Japanese cohorts are lacking, the high proportion of productivity impairment attributable to presenteeism supports the possibility that interictal symptoms contribute meaningfully to economic burden. 30,31 Furthermore, higher Migraine Interictal Burden Scale (MIBS-4) scores have been shown to correlate with greater activity impairment and lower workplace productivity.^{8,32}

6) Family and social burden

Longitudinal data from the Chronic Migraine Epidemiology and Outcomes (CaMEO) study highlight the widespread impact of migraine on family functioning. Nearly half of respondents with migraine reported reduced participation in family activities, with the highest burden observed among those with CM. They felt their partner did not understand the severity of their condition, and a substantial proportion believed they would be better parents without migraine. Furthermore, adolescents living with a parent with CM experienced greater anxiety, missed activities, and assumed more household responsibilities than those with a parent who had episodic migraine. In a study of headache specialty clinic patients with migraine in the

United States, 19.9% of women avoided pregnancy due to their migraine, mostly because of concerns about negative impacts of migraine on their pregnancy and child.³⁵ These findings demonstrate that migraine is not only a personal condition but also a family disease, with implications for emotional health and household dynamics.

3. Assessment tools for interictal burden

Recognition of IIB as a major contributor to migraine-related disability has led to the development and adaptation of various assessment tools. Although a fully comprehensive, validated instrument for IIB remains unavailable, both migraine-specific and general instruments are used (Table 2).

1) Migraine-specific instruments

Most migraine-specific instruments were originally developed to assess global headache-related disability, with particular emphasis on ictal burden. While not specifically designed to evaluate interictal effects, certain items—such as those addressing fatigue, concentration difficulties, or reduced vitality—may inadvertently capture functional limitations that persist during headache-free intervals. Accordingly, these measures should be interpreted as providing only partial and indirect insights into IIB rather than as dedicated assessments. This limitation highlights the need for rigorously validated instruments explicitly designed to quantify IIB, such as the MIBS-4.

(1) Migraine Interictal Burden Scale

The MIBS-4 is currently the only instrument explicitly designed to assess IIB. It comprises four items assessing emotional distress, difficulty in making plans or commit-

Table 2. Migraine-specific instruments for measuring IIB

10010 =1 11118	ramo speeme motramento foi measa		
	Purpose	Domains	Limitations
MIBS-4	Specific IIB	Emotional distress, planning difficulty, social disruption, work/school impairment	Brief, easy to use, but limited scope
MSQ v2.1	Migraine-specific QoL	Role Function–Restrictive, Preventive, and Emotional	Sensitive to functional changes, but partial interictal coverage
HIT-6	Headache impact and disability	Pain, fatigue, cognitive impairment, role limitation	Not interictal-specific, indirect measure
MIDAS	Headache-related productivity loss	Absenteeism, reduced productivity, overall disability	Mixed ictal/interictal contributions

IIB, interictal burden; MIBS-4, Migraine Interictal Burden Scale; MSQ, Migraine-Specific Quality of Life Questionnaire; QoL, quality of life; HIT-6, Headache Impact Test; MIDAS, Migraine Disability Assessment.

ments, social or leisure disruption, and impairment in work or school life. Each item is rated on a 0–3 scale (total score 0–12), with higher scores indicating greater burden. Scores are categorized as none (0), mild (1–2), moderate (3–4), or severe (≥5). Validation data from real-world studies such as OVERCOME (Japan, US) show correlation with health-related QoL, productivity loss, and daily functioning. In the OVERCOME (Japan) study, higher MIBS-4 scores were associated with greater activity impairment, productivity loss, absenteeism, and presenteeism within Headache Impact Test (HIT-6) strata. 8

(2) Migraine-Specific Quality of Life Questionnaire

The Migraine-Specific Quality of Life Questionnaire (MSQ v2.1) is a widely used instrument for assessing the impact of migraine on health-related QoL. It consists of three domains: Role Function-Restrictive, Role Function-Preventive, and Emotional Function. While originally developed to measure ictal-related quality-of-life impairment, items within the Role Function-Restrictive domain are sensitive to interictal functional limitations, such as reduced energy, motivation, and social participation on non-headache days.³⁶ In a validation study of the Greek version of MSQ v2.1, significant moderate correlations were observed between MSQ scores and the Migraine Disability Assessment (MIDAS), with correlation coefficients ranging from $\rho = -0.562$ to -0.519 (p<0.001). These findings support that the Role Function-Restrictive domain reflects functional limitations in daily life and is relevant for assessing the broader impact of migraine beyond headache episodes.³⁶ (3) Headache Impact Test

HIT-6 measures headache-related disability, including difficulty concentrating, fatigue, and role limitations. Although not designed specifically for IIB, psychometric studies suggest that some items indirectly reflect interictal

cognitive and functional impairment. 38,39

(4) Migraine Disability Assessment

MIDAS assesses productivity loss over the past three months due to migraine. Although it aggregates both ictal and interictal days, it can indirectly reflect persistent functional limitations in individuals with frequent attacks, providing a partial estimate of IIB. 40,41

2) Generic and complementary instruments

In addition to migraine-specific tools, several broadly applicable instruments can be utilized to capture specific domains of IIB that are otherwise underrepresented (Table 3).

(1) Cognitive Failures Questionnaire

The Cognitive Failures Questionnaire (CFQ) is a self-reported survey that assesses daily memory, attention, and execution failures. In migraine patients, CFQ scores have been shown to correlate significantly with subjective cognitive impairment during attacks, supporting its utility as a complementary tool for evaluating cognitive dysfunction. 42

(2) Hospital Anxiety and Depression Scale

The Hospital Anxiety and Depression Scale (HADS) assesses anxiety (HADS-A) and depression (HADS-D), which are key components of anticipatory anxiety and emotional distress between migraine attacks. In a cross-sectional study, individuals with migraine scoring ≥ 11 on HADS-A had over twice the odds of interictal anxiety compared to those with lower scores. Elevated HADS-A and HADS-D scores are also common in patients with MOH and significantly decrease following detoxification treatment, highlighting their clinical relevance. Furthermore, higher monthly headache days are associated with a dose-dependent increase in psychological distress, with ≥ 3 days linked to anxiety and ≥ 19 days to depression and severe disability.

Table 3. Generic and complementary instruments

	Purpose	Domains	Application in migraine research
CFQ	Cognitive performance in daily activities	Memory, attention, executive failures	Elevated in both ictal and interictal periods
HADS	Emotional well-being	Anxiety (HADS-A), depression (HADS-D)	Identifies anticipatory anxiety, emotional distress
WPAI	Work productivity and activity impairment	Presenteeism, absenteeism, total activity loss	Estimates economic and occupational impact
WHODAS 2.0, SF-36, EQ-5D	General health-related quality of life	Physical, psychological, and social functioning	Assesses vitality, role function, social participation

CFQ, Cognitive Failures Questionnaire; HADS, Hospital Anxiety and Depression Scale; WPAI, Work Productivity and Activity Impairment questionnaire; WHODAS 2.0, World Health Organization Disability Assessment Schedule 2.0; SF-36, 36-item short-form; EQ-5D, EuroQol-5 Dimensions.

(3) Work Productivity and Activity Impairment questionnaire

The Work Productivity and Activity Impairment questionnaire (WPAI) measures absenteeism, presenteeism, and overall activity impairment. In Japan, presenteeism has been shown to consume 29.8%–49.9% of work time in migraine patients, far exceeding absenteeism rates (3.8%–6.2%). WPAI scores have also been found to increase with headache frequency, with presenteeism rising from 41.7% in patients with 0–3 monthly headache days to 67.5% in those with \geq 15 days. The surface of the surfa

(4) World Health Organization Disability Assessment Schedule 2.0 and 36-item short-form/EuroOol-5 Dimensions Generic health-related OoL instruments such as World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0), 36-item short-form (SF-36), and EuroOol-5 Dimensions (EQ-5D) have been used in headache and pain research to capture interictal functional impairments, particularly in domains of vitality, social participation, and role limitations. 48-50 A large European study demonstrated that higher frequency of headache days (≥4 monthly headache days) is associated with significantly lower health-related QoL (SF-6D, EQ-5D, and SF-36 summary scores) and increased work/activity impairment.⁵¹ Clinical data using 5-level EQ-5D (EQ-5D-5L) confirm that patients with CM report lower health utility scores compared to those with episodic migraine, even outside of headache episodes.³⁹ Population-based data from England using SF-36 show broad impairment across vitality, role limitation, and social functioning domains among those with migraine, particularly in those with moderate to severe disability.⁵²

DISCUSSION

The construct of IIB in migraine demonstrates that the impact from migraine extends beyond the ictal phase, encompassing persistent cognitive, emotional, sensory, and functional impairments even during headache-free periods. Epidemiological studies have shown that IIB is highly prevalent across all migraine subtypes, even including individuals with low-frequency episodic migraine. This highlights the limitation of traditional metrics, such as monthly headache days, which primarily focus on ictal symptoms and do not fully capture the full burden of migraine. Even when headache frequency is relatively low, the psycho-

logical burden of anticipating the next attack, along with ongoing symptoms such as fatigue, allodynia, photophobia, and cognitive dysfunction, can significantly reduce health-related QoL. These findings highlight the need to redefine migraine as a persistent neurological disorder rather than an episodic condition. They also emphasize the importance of integrating IIB into clinical assessment and treatment strategies.

IIB has widespread functional and societal implications. Beyond the direct suffering experienced by those with migraine, migraine significantly impacts the workplace, family life, and social interactions. Reduced workplace productivity is a major concern, with presenteeism consistently identified as the primary driver of economic loss. IIB not only affects individuals, but also imposes a substantial economic burden on employers and society.

The impact of migraine on families is also profound. The CaMEO study demonstrates that migraine interferes with family activities and relational dynamics, with the highest burden observed among those with CM. These findings emphasize that migraine is a family disease, influencing relationships, emotional well-being, and the daily functioning of household members.

Assessing IIB remains challenging due to methodological limitations. The MIBS-4 is the only tool specifically designed to measure IIB. Other instruments such as MSQ v2.1, HIT-6, and MIDAS were originally developed for ictal assessment but can provide partial insights into interictal effects. In addition, generic tools like the CFQ, HADS, WPAI, WHODAS 2.0, SF-36, and EQ-5D can complement migraine-specific measures by evaluating cognitive, psychological, and social dimensions. However, there is no single comprehensive tool that addresses all aspects of IIB, and many instruments lack cross-cultural validation, particularly for patients with CM. Furthermore, IIB is rarely included as a primary outcome measure in clinical trials, limiting our understanding of its responsiveness to treatment. Nonetheless, recent evidence indicates that IIB can be improved by preventive therapies. In a prospective cohort of 150 CM patients, onabotulinumtoxinA treatment reduced MIBS-4 scores by approximately 29% at 3 months and 42% at 12 months, reflecting sustained improvements in daily functioning.⁵³ Similarly, clinical data with CGRP monoclonal antibodies, such as galcanezumab, demonstrate reductions in interictal symptoms including allodynia and fatigue.⁵⁴ These findings highlight the potential of recent preventive treatments to alleviate both ictal and IIB, underscoring the need to systematically include IIB endpoints in future trials and clinical practice to provide a more comprehensive and patient-centered assessment of therapeutic benefit.

To address these gaps, several key steps are needed. First, a standardized definition of the interictal period should be established, particularly for CM, where headache-free days are less common. Second, new multidimensional instruments must be developed to comprehensively assess the cognitive, emotional, sensory, and social aspects of IIB and validated across diverse cultures and age groups. Third, both clinical trials and real-world registries should incorporate IIB measures to better evaluate its prognostic value and the effectiveness of preventive and behavioral interventions on reducing IIB. Finally, future research should investigate how cultural and sociodemographic factors influence the perception and reporting of IIB, thereby enhancing the global relevance and applicability of migraine management strategies.

In conclusion, IIB is a substantial yet underrecognized component of migraine-related burden. Even in the absence of headache, individuals with migraine may experience persistent symptoms that significantly impact QoL, work productivity, and family relationships. The development of comprehensive, validated assessment tools and the integration of IIB into longitudinal studies and clinical trials are essential steps toward addressing this hidden burden.

AVAILABILITY OF DATA AND MATERIAL

The data presented in this study are available upon reasonable request from the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization: SKK, TJS; Data curation: SKK; Formal analysis: SKK; Investigation: SKK; Methodology: SKK; Supervision: TJS; Writing-original draft: SKK; Writing-review & editing: SKK, TJS.

CONFLICT OF INTEREST

Soo-Kyoung Kim is the Deputy Editor of *Headache and Pain Research* and was not involved in the review process of this article.

Todd J. Schwedt has received personal compensation for consulting with AbbVie, Linpharma, Lundbeck, and Salvia, and royalties from UpToDate, within the prior 24 months. He holds stock options in Allevalux and Nocira. His institution has received research grants on his behalf from American Heart Association, Flinn Foundation, Henry Jackson Foundation, National Headache Foundation, National Institutes of Health, Patient Centered Outcomes Research Institute, Pfizer, Spark Neuro, and the United States Department of Defense.

FUNDING STATEMENT

Not applicable.

ACKNOWLEDGMENTS

Not applicable.

REFERENCES

- 1. Dodick DW. Migraine. Lancet 2018;391:1315-1330.
- 2. Ashina M. Migraine. N Engl J Med 2020;383:1866-1876.
- 3. Hazard E, Munakata J, Bigal ME, Rupnow MF, Lipton RB. The burden of migraine in the United States: current and emerging perspectives on disease management and economic analysis. Value Health 2009;12:55-64.
- 4. Seddik AH, Branner JC, Ostwald DA, Schramm SH, Bierbaum M, Katsarava Z. The socioeconomic burden of migraine: an evaluation of productivity losses due to migraine headaches based on a population study in Germany. Cephalalgia 2020;40:1551-1560.
- 5. Steiner TJ, Terwindt GM, Katsarava Z, et al. Migraine-attributed burden, impact and disability, and migraine-impacted quality of life: Expert consensus on definitions from a Delphi process. Cephalalgia 2022;42:1387-1396.
- **6.** Stewart WF, Wood C, Reed ML, Roy J, Lipton RB; AMPP Advisory Group. Cumulative lifetime migraine incidence in women and men. Cephalalgia 2008;28:1170-1178.
- 7. GBD 2016 Headache Collaborators. Global, regional, and national burden of migraine and tension-type headache, 1990-

- 2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2018;17:954-976.
- 8. Takizawa T, Danno D, Ishii R, et al. The dual impact of ictal and interictal burden in migraine: an analysis from the Obser-Vational survey of the Epidemiology, tReatment, and Care Of MigrainE (OVERCOME) Japan second study. J Headache Pain 2025;26:140.
- **9.** Vincent M, Viktrup L, Nicholson RA, Ossipov MH, Vargas BB. The not so hidden impact of interictal burden in migraine: a narrative review. Front Neurol 2022;13:1032103.
- Duan S, Ren Z, Xia H, et al. Associations between anxiety, depression with migraine, and migraine-related burdens. Front Neurol 2023;14:1090878.
- Lampl C, Thomas H, Stovner LJ, et al. Interictal burden attributable to episodic headache: findings from the Eurolight project. J
 Headache Pain 2016;17:9.
- **12.** Peng KP, May A. Redefining migraine phases a suggestion based on clinical, physiological, and functional imaging evidence. Cephalalgia 2020;40:866-870.
- 13. Shapiro RE, Nicholson RA, Seng EK, et al. Migraine-related stigma and its relationship to disability, interictal burden, and quality of life: results of the OVERCOME (US) study. Neurology 2024;102:e208074.
- 14. Topbaş U, Taşdelen B, Gürlen NÖ, Özge A. Premonitory symptoms in migraine: implications for disease burden and cognitive impairment, with some promising answers. Headache Pain Res 2025;26:130-141.
- 15. Camarda C, Monastero R, Pipia C, Recca D, Camarda R. Interictal executive dysfunction in migraineurs without aura: relationship with duration and intensity of attacks. Cephalalgia 2007;27:1094-1100.
- 16. Castro Zamparella T, Carpinella M, Peres M, et al. Specific cognitive and psychological alterations are more strongly linked to increased migraine disability than chronic migraine diagnosis. J Headache Pain 2024;25:37.
- 17. Migliore S, D'Aurizio G, Altamura C, et al. Task-switching abilities in episodic and chronic migraine. Neurol Sci 2022;43:3803-3810.
- **18.** Lee SH, Lee Y, Song M, Lee JJ, Sohn JH. Differences in frontal lobe dysfunction in patients with episodic and chronic migraine. J Clin Med 2021;10:2779.
- **19.** Hagen K, Linde M, Steiner TJ, Stovner LJ, Zwart JA. Risk factors for medication-overuse headache: an 11-year follow-up study. The Nord-Trøndelag Health Studies. Pain 2012;153:56-61.
- 20. Ashina S, Serrano D, Lipton RB, et al. Depression and risk of

- transformation of episodic to chronic migraine. J Headache Pain 2012;13:615-624.
- **21.** Casas-Limón J, Quintas S, López-Bravo A, et al. Unravelling migraine stigma: a comprehensive review of its impact and strategies for change. J Clin Med 2024;13:5222.
- **22.** Shapiro RE, Muenzel EJ, Nicholson RA, et al. Factors and reasons associated with hesitating to seek care for migraine: results of the OVERCOME (US) study. Neurol Ther 2025;14:135-155.
- 23. Buse DC, Cady R, Starling AJ, et al. Headache/migraine-related stigma, quality of life, disability, and most bothersome symptom in adults with current versus previous high-frequency headache/migraine and medication overuse: results of the Migraine Report Card survey, BMC Neurol 2024;24:232.
- 24. Buse DC, Fanning KM, Reed ML, et al. Life With migraine: effects on relationships, career, and finances from the Chronic Migraine Epidemiology and Outcomes (CaMEO) Study. Headache 2019;59:1286-1299.
- 25. Young WB, Park JE, Tian IX, Kempner J. The stigma of migraine. PLoS One 2013;8:e54074.
- **26.** Seng EK, Muenzel EJ, Shapiro RE, et al. Development of the migraine-related stigma (MiRS) questionnaire: results of the OVERCOME (US) study. Headache 2025;65:269-279.
- 27. Russo A, Esposito F, Conte F, et al. Functional interictal changes of pain processing in migraine with ictal cutaneous allodynia. Cephalalgia 2017;37:305-314.
- **28.** Datta R, Aguirre GK, Hu S, Detre JA, Cucchiara B. Interictal cortical hyperresponsiveness in migraine is directly related to the presence of aura. Cephalalgia 2013;33:365-374.
- **29.** Begasse de Dhaem O, Sakai F. Migraine in the workplace. eNeurologicalSci 2022;27:100408.
- **30.** Shimizu T, Sakai F, Miyake H, et al. Disability, quality of life, productivity impairment and employer costs of migraine in the workplace. J Headache Pain 2021;22:29.
- **31.** Matsumori Y, Ueda K, Komori M, et al. Burden of migraine in Japan: results of the ObserVational Survey of the Epidemiology, tReatment, and Care Of MigrainE (OVERCOME [Japan]) study. Neurol Ther 2022;11:205-222.
- **32.** Hubig LT, Smith T, Williams E, et al. Measuring interictal burden among people affected by migraine: a descriptive survey study. J Headache Pain 2022;23:97.
- **33.** Buse DC, Scher AI, Dodick DW, et al. Impact of migraine on the family: perspectives of people with migraine and their spouse/domestic partner in the CaMEO study. Mayo Clin Proc 2016;91:596-611.
- 34. Buse DC, Powers SW, Gelfand AA, et al. Adolescent perspec-

- tives on the burden of a parent's migraine: results from the CaMEO study. Headache 2018;58:512-524.
- **35.** Ishii R, Schwedt TJ, Kim SK, Dumkrieger G, Chong CD, Dodick DW. Effect of migraine on pregnancy planning: insights from the American Registry for Migraine Research. Mayo Clin Proc 2020;95:2079-2089.
- **36.** Speck RM, Shalhoub H, Wyrwich KW, et al. Psychometric validation of the role function restrictive domain of the Migraine Specific Quality-of-Life Questionnaire version 2.1 electronic patient-reported outcome in patients with episodic and chronic migraine. Headache 2019;59:756-774.
- **37.** Giannouli E, Giannouli E, Alexoudi A, et al. Validity and reliability of the Greek Migraine-Specific Quality of Life Questionnaire (MSQ version 2.1-GR). J Patient Rep Outcomes 2024;8:72.
- **38.** Houts CR, Wirth RJ, McGinley JS, et al. Content validity of HIT-6 as a measure of headache impact in people with migraine: a narrative review. Headache 2020;60:28-39.
- **39.** Oliveira Gonçalves AS, Panteli D, Neeb L, Kurth T, Aigner A. HIT-6 and EQ-5D-5L in patients with migraine: assessment of common latent constructs and development of a mapping algorithm. Eur J Health Econ 2022;23:47-57.
- **40.** Stewart WF, Lipton RB, Kolodner KB, Sawyer J, Lee C, Liberman JN. Validity of the Migraine Disability Assessment (MIDAS) score in comparison to a diary-based measure in a population sample of migraine sufferers. Pain 2000;88:41-52.
- 41. Steiner TJ, Lipton RB; Lifting The Burden: The Global Campaign against Headache. The Headache-Attributed Lost Time (HALT) Indices: measures of burden for clinical management and population-based research. J Headache Pain 2018;19:12.
- **42.** Gil-Gouveia R, Oliveira AG, Martins IP. A subjective cognitive impairment scale for migraine attacks. The MIG-SCOG: development and validation. Cephalalgia 2011;31:984-991.
- **43.** Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983;67:361-370.
- 44. Bendtsen L, Munksgaard S, Tassorelli C, et al. Disability, anxiety and depression associated with medication-overuse headache can be considerably reduced by detoxification and prophylactic

- treatment. Results from a multicentre, multinational study (CO-MOESTAS project). Cephalalgia 2014;34:426-433.
- 45. Irimia P, Garrido-Cumbrera M, Santos-Lasaosa S, et al. Impact of monthly headache days on anxiety, depression and disability in migraine patients: results from the Spanish Atlas. Sci Rep 2021;11:8286.
- Reilly MC, Zbrozek AS, Dukes EM. The validity and reproducibility of a work productivity and activity impairment instrument. Pharmacoeconomics 1993;4:353-365.
- 47. Ishii R, Sakai F, Sano H, Nakai M, Koga N, Matsukawa M. Quality of life and work productivity and activity impairment among online survey respondents with migraine across a range of headache frequency. Front Neurol 2024;15:1440733.
- **48.** D'Amico D, Tepper SJ, Guastafierro E, et al. Mapping assessments instruments for headache disorders against the ICF biopsychosocial model of health and disability. Int J Environ Res Public Health 2020;18:246.
- **49.** Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992;30:473-483.
- **50.** Rabin R, de Charro F. EQ-5D: a measure of health status from the EuroQol Group. Ann Med 2001;33:337-343.
- **51.** Doane MJ, Gupta S, Vo P, Laflamme AK, Fang J. Associations between headache-free days and patient-reported outcomes among migraine patients: a cross-sectional analysis of survey data in Europe. Pain Ther 2019;8:203-216.
- **52.** Lipton RB, Liberman JN, Kolodner KB, Bigal ME, Dowson A, Stewart WF. Migraine headache disability and health-related quality-of-life: a population-based case-control study from England. Cephalalgia 2003;23:441-450.
- 53. Sánchez-Huertas A, Camejo-Mas O, Garcia-Roldan S, et al. OnabotulinumtoxinA is an effective treatment for reducing the interictal burden in patients with chronic migraine: a prospective observational study. Toxins (Basel) 2025;17:463.
- 54. Danno D, Imai N, Kitamura S, Ishizaki K, Kikui S, Takeshima T. Efficacy of galcanezumab in migraine central sensitization. Sci Rep 2024;14:21824.

Review Article

Headache Pain Res 2025;26(3):209-217 pISSN: 3022-9057 • eISSN: 3022-4764 https://doi.org/10.62087/hpr.2025.0019

The Hidden Risks of Medication Underuse in Migraine Progression

Heui-Soo Moon[®], Pil-Wook Chung[®]

Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

Abstract

Migraine is a progressive neurological disorder in which inadequate treatment can lead to chronification. For decades, clinical attention has centered on medication overuse headache (MOH) as the primary iatrogenic risk factor for this progression. However, medication underuse (MU) has emerged as a critical yet less established framework for understanding gaps in migraine care. This review reframes MU, which includes ineffective therapies, delayed administration, and non-adherence due to intolerability, as an active contributor to disease progression. Untreated or undertreated migraine attacks promote the development of central sensitization, a state of neuronal hyperexcitability that increases attack frequency, severity, and treatment resistance. This paper posits that MU and MOH are not opposing concepts but interconnected manifestations of suboptimal disease management. Specifically, disease progression driven by MU can directly precipitate the escalating medication use that characterizes MOH, resulting in a more refractory clinical state. Therefore, preventing chronification requires a paradigm shift from merely avoiding overuse to achieving optimal use. This entails adherence to evidence-based guidelines for both acute and preventive therapy—implementing stratified acute care within the neurobiological window to prevent central sensitization and initiating timely preventive treatment in eligible patients to reduce the overall attack burden. The integration of novel targeted therapies provides new opportunities to overcome the limitations of traditional agents. Ultimately, reducing the risks associated with MU through proactive, evidence-based management and strong patient–clinician communication is essential to alter the natural history of migraine and prevent the long-term disability associated with its progression.

Keywords: Central nervous system sensitization, Medication overuse, Medication underuse, Migraine disorder

INTRODUCTION

Migraine is a highly prevalent neurological disorder, affecting approximately 12%–15% of the global adult population and representing the leading cause of disability in individuals under 50 years of age. The condition imposes

a significant burden, leading to impaired quality of life, reduced productivity, and substantial socioeconomic costs from both direct healthcare expenditures and indirect losses.² Migraine is not a static condition but a progressive disorder, with an estimated 2.5% of individuals with episodic migraine transitioning to chronic migraine (CM) an-

Received: September 29, 2025; Revised: October 5, 2025; Accepted: October 5, 2025

Correspondence: Pil-Wook Chung, M.D.

Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea

Tel: +82-2-2001-2050, Fax: +82-2-2001-2049, E-mail: chungpw@hanmail.net

© 2025 The Korean Headache Society

®This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

nually.³ This progression highlights the need for effective management strategies to mitigate its extensive personal and societal impact.

Current standard treatments include acute therapies for rapid symptom relief and preventive regimens to reduce attack frequency and severity. The prompt and appropriate application of these medications is fundamental to achieving favorable outcomes and preventing chronification. However, a pivotal and often underrecognized issue in clinical practice is medication underuse (MU), defined as the suboptimal application of indicated treatments, including underutilization, poor adherence, delayed administration, or premature discontinuation. Such underuse can aggravate migraine progression by permitting the neuroplastic changes, such as central sensitization, that amplify attack frequency, intensity, and treatment resistance.

The hidden risks of MU include an increased likelihood of chronification, exacerbation of comorbid conditions, and greater healthcare demands, which are often overshadowed by the clinical emphasis on medication overuse headache (MOH). This review investigates the complex relationship between MU and migraine progression, highlighting its foundational risks and advocating for proactive clinical interventions. Subsequent sections will outline the mechanisms of underuse, its clinical impact, and evidence-based guidelines for optimized care, with the goal of mitigating these underappreciated risks.

PATHOPHYSIOLOGY OF MIGRAINE CHRONIFICATION

1. Central sensitization as a core mechanism

Central sensitization is a key neurophysiological phenomenon underlying migraine chronification.⁷ It refers to a state of hyperexcitability in central pain-transmitting neurons, particularly in the trigeminocervical complex and thalamus, induced by persistent and intense nociceptive input.⁸ In this state, the activation threshold of neurons is lowered, leading to responses to stimuli that are normally not painful and to spontaneous neuronal firing.

Clinically, central sensitization manifests as allodynia, where innocuous stimuli, such as combing hair or light touch, are perceived as painful. When migraine attacks are recurrent and inadequately treated, the intense affer-

ent signals from the peripheral trigeminal system induce neuroplastic changes that alter synaptic strength in central neurons. ¹⁰ This activity-dependent process establishes a persistent state of hypersensitivity in the pain system, creating a vicious cycle of increased attack frequency, greater intensity, and diminished treatment response. Thus, CM should be understood not merely as frequent headaches but as a disease state characterized by chronic sensitization of the central nervous system.

2. The role of neuropeptides and neuroinflammation

Neuropeptides, particularly calcitonin gene-related peptide (CGRP), and subsequent neurogenic inflammation play a pivotal role in migraine attacks and chronification. During a migraine attack, CGRP is released in large quantities from activated trigeminal nerve endings. The released CGRP acts on dural blood vessels, causing vasodilation, and stimulates mast cells to release inflammatory mediators such as histamine and serotonin.

This cascade triggers a localized, sterile inflammatory response in the dura mater, which in turn stimulates trigeminal nerve endings, creating a positive feedback loop that amplifies pain signals. ¹⁴ Each inadequately treated migraine attack represents a significant inflammatory event that provides a powerful afferent stimulus, promoting and maintaining central sensitization. The cumulative effect of these repeated, uncontrolled inflammatory processes can induce long-term changes in central pain circuits, thereby facilitating the transition to CM. ¹⁵ This highlights that the goal of migraine therapy should extend beyond simple pain relief to the rapid and effective termination of the underlying neuroinflammatory process.

THE ROLE OF MEDICATION OVERUSE IN MIGRAINE PROGRESSION

For decades, MOH has been the most prominent iatrogenic factor in the study and clinical management of migraine chronification. Considered the "best-documented iatrogenic factor in migraine chronification," MOH is a secondary headache disorder caused by the excessive use of acute headache medications. The International Classification of Headache Disorders (ICHD)-3 defines MOH as the worsening of a pre-existing headache or the development

of a new type of headache in the context of regular overuse of specific medications for more than 3 months. 18 The core pathophysiology of MOH is a vicious cycle. To manage escalating headaches, patients increase their intake of acute medication. The medication overuse itself then disrupts the brain's endogenous pain modulation systems, lowering the headache threshold and increasing headache frequency (Figure 1).19 This leads patients to consume even more medication to treat the worsening pain. This cycle is thought to involve complex biological mechanisms, including neurotransmitter receptor downregulation, dysfunction of endogenous pain control systems, and exacerbation of central sensitization.²⁰ Furthermore, behavioral and psychological factors, such as anticipatory anxiety and pain-related fear, can reinforce medication dependency and perpetuate the cycle.²¹

The identification of MOH and research into its mechanisms have led to significant advances in migraine care. Warning patients about its risks is an essential component of patient safety. As a result, MOH has become a central topic in clinical guidelines, patient education, and academic research for decades. ²² Clinicians worldwide now consider it standard practice to instruct patients to track their acute medication use and adhere to established limits. These efforts have undoubtedly prevented many patients from developing MOH. However, this intense focus on MOH has created a consequential oversight in clinical

paradigms. Clinical discourse regarding medication use has concentrated almost exclusively on the dangers of using "too much," while the potential risks of using "too little" have been relatively neglected. The powerful message that frequent use of acute medication is dangerous has framed the conversation around restriction and regulation. Consequently, there has been a lack of systematic investigation into the negative impact of failing to use appropriate medication when needed—a phenomenon termed MU on migraine progression. This has created a paradoxical situation where the system designed to prevent one iatrogenic problem (MOH) may inadvertently contribute to another: disease progression due to MU.

A PARADIGM SHIFT: INVESTIGATING MEDICATION UNDERUSE AS A CATALYST FOR PROGRESSION

1. Defining and quantifying medication underuse

MU is a multidimensional concept that encompasses several distinct patterns of suboptimal treatment. These include the ineffective utilization of appropriate therapies, where a medication is not well-matched to attack severity, leading to prolonged headache exposure and heightened risk of central sensitization. ^{5,23} It also involves underutilization among eligible patients, where a significant propor-

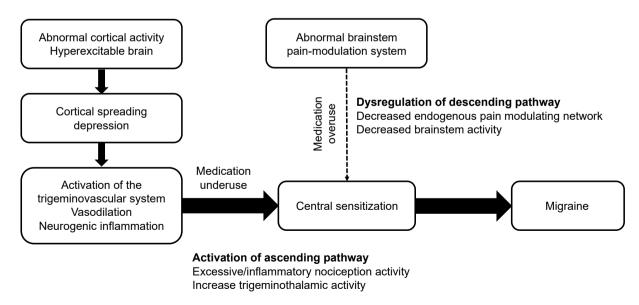


Figure 1. Interplay of medication underuse and overuse in migraine progression.

tion of individuals who warrant acute or preventive therapy do not receive it, contributing to disease progression. 24,25 Another critical aspect is the inappropriate timing of administration, particularly delaying acute medication until an attack is severe, which significantly reduces efficacy by failing to halt the propagation of central sensitization. 5,26 Finally, patient dissatisfaction, stemming from insufficient efficacy or intolerable side effects, often leads to non-adherence or premature discontinuation of therapy, which are major factors in poor adherence for both acute and preventive medications. 25,27 Objectively measuring these dimensions presents methodological challenges, requiring a comprehensive approach that utilizes patient diaries, prescription data, and validated questionnaires to quantify the patterns and extent of underuse. 28

2. Key manifestations of acute medication underuse

The underuse of acute medication is a critical iatrogenic factor in migraine progression, manifesting primarily through inadequate treatment efficacy, suboptimal prescribing and delayed administration, and poor tolerability leading to non-adherence. Suboptimal efficacy is a principal contributor to chronification. The American Migraine Prevalence and Prevention (AMPP) Study found a direct, graded association between poor treatment response and the risk of new-onset CM, with individuals reporting "very poor" efficacy having 2.55 times the odds of progressing compared to those with "maximal" efficacy. This is mirrored in South Korean claims data, where extremely high discontinuation rates for acute therapies—with only 25.2% of new triptan users persisting after three months—suggest a significant issue with perceived efficacy or tolerability. 29

The timing of medication intake also profoundly influences therapeutic success. Contemporary paradigms favor immediate treatment at headache inception to prevent the establishment of central sensitization. The TEMPO study demonstrated that early triptan administration (<1 hour post-onset) yielded significantly higher rates of 2-hour pain freedom compared to late administration (≥1 hour). Furthermore, suboptimal prescribing contributes to underuse. In South Korea, for instance, newly diagnosed migraine patients are most frequently prescribed non-steroidal anti-inflammatory drugs (NSAIDs) (69.9%) or acetaminophen (50.0%), rather than migraine-specific triptans,

which may be inadequate for moderate-to-severe attacks.²⁹ Lastly, poor tolerability is a major barrier to effective treatment. Data from the Chronic Migraine Epidemiology and Outcomes (CaMEO) Study revealed that 35.5% of individuals who had ever used acute prescription medications had discontinued them, with tolerability (24.9%) and efficacy concerns (28.2%) being key reasons.³¹ The challenge of non-adherence is starkly illustrated in South Korea, where 65.7% of newly diagnosed patients discontinue their initial acute treatment within 3 months, highlighting a critical gap in maintaining effective therapy.²⁹

3. Key manifestations of preventive medication underuse

Underuse of preventive medication represents a significant gap in migraine care, leaving many patients vulnerable to disease progression. This issue is influenced by low initiation rates among eligible patients, poor adherence, and high discontinuation rates for those who start therapy, and challenges with tolerability. A substantial proportion of individuals who meet established criteria for preventive therapy do not receive it. In the United States, it is estimated that while approximately 38% of people with migraine qualify for prophylaxis, only 12%–13% actually use it. This treatment gap is a global issue, with European data showing that only 26% of eligible patients use traditional preventive agents, and a South Korean analysis finding that only 7.3% of newly diagnosed patients were prescribed preventive treatment. 29,34

Even when preventive therapy is initiated, adherence and persistence are notably poor, particularly with traditional oral agents. Real-world data report adherence rates as low as 17%–20% at 12 months, with persistence even lower in CM populations. Data from South Korea mirror these findings, showing persistence rates for some preventive treatments dropping to just 6%–7% after 12 months. A primary factor in this low adherence is the adverse effect profile of many traditional preventive medications. Meta-analyses show that approximately 23% of patients withdraw from clinical trials due to side effects, and in real-world settings, tolerability concerns contribute to discontinuation in up to 30% of cases. This dissatisfaction is a key factor leading to treatment abandonment, which perpetuates a cycle of underuse and leaves patients

exposed to the risks of migraine progression.³⁹

4. Etiology of underuse

MU is a complex behavior resulting from the interplay of psychological, educational, and socioeconomic factors. These can be broadly categorized into patient-centered barriers and system- or clinician-related barriers. Patient-centered barriers include fear of side effects, which many find more distressing than the headache itself, and concerns about addiction or tolerance, which may be an unintended consequence of warnings about MOH. Distrust in efficacy from past negative experiences can also lower expectations for new treatments, while social stigma may cause patients to avoid taking medication in public. 27,41

System- and clinician-related barriers are also significant. Limited access to care, due to geographic distance or long wait times, can prevent timely management.²⁴ The high cost of newer, more effective treatments is another substantial barrier that can cause patients to ration or forgo medication.⁴² Finally, insufficient clinician education can lead to a failure to adequately address patient fears and misconceptions or to provide clear instructions, resulting in a passive or hesitant approach to treatment on the part of the patient.⁴³

5. A hypothesized mechanism for underuse-mediated progression

The central hypothesis of this review is that underuse of acute migraine medication is causally linked to the progression to CM. The proposed biological mechanism involves a cascade beginning with the repetition of uncontrolled neuroinflammation. When a migraine attack is untreated or undertreated, the release of CGRP and subsequent neurogenic inflammation persist at maximum intensity and for a prolonged duration (Figure 1). This potent and sustained inflammatory state strongly stimulates trigeminal nerve endings, sending a massive barrage of nociceptive signals to the central nervous system. The repeated transmission of these intense pain signals acts as a powerful stimulus that strengthens synaptic connections and lowers activation thresholds in the trigeminocervical complex and thalamus, effectively inducing and consoli-

dating a state of central sensitization. At the clinical level, these neurobiological changes manifest as an increased frequency and severity of headache attacks, diminished responsiveness to future treatments, and ultimately, the transformation to CM. In summary, MU accelerates chronification by sustaining ascending nociception and eroding descending inhibition, underscoring the need for timely pharmacotherapy to preserve neural homeostasis.

MU and overuse are not mutually exclusive phenomena; rather, they can interact dynamically within a patient's disease course. A patient might initially adopt an underuse strategy due to fears of MOH and side effects. This underuse could promote disease progression and deepen central sensitization, making headaches more frequent and severe. Faced with intractable pain, the patient may then overcome their initial fears and begin using medication frequently out of desperation, transitioning into a state of overuse. This suggests that underuse is not merely the opposite of overuse, but can be a direct precursor, facilitating the disease progression that culminates in the frequent medication use characteristic of MOH. To emphasize the relationship between MU and MOH, Table 1 summarizes their key features including definitions, behaviors, pathophysiological mechanisms, clinical consequences, and management strategies, emphasizing their interconnected roles in disease progression.

CLINICAL IMPLICATIONS AND A NEW FRAMEWORK FOR MIGRAINE MANAGEMENT

1. Re-evaluating the therapeutic window

The primary goal of acute migraine treatment is rapid pain cessation, ideally within 2 hours, to halt the underlying neuroinflammatory cascade and prevent attack recurrence. Effective and timely treatment is critical because a migraine attack is a progressive neurological event. The development of cutaneous allodynia—pain from normally non-painful stimuli—serves as a clinical marker for the establishment of central sensitization. This process follows a distinct timeline: within 1 hour of headache onset, allodynia may appear on the same side as the pain; by 2 hours, it can spread to the opposite side of the head and even the limbs, indicating that sensitization has progressed from second- to third-order neurons in the thalamus. This neu-

Table 1. Comparative analysis of medication overuse and underuse in migraine progression

Features	Medication underuse	Medication overuse
Definition	The suboptimal application of indicated treatments, including underutilization, delayed administration, or premature discontinuation	The frequent use of acute headache medications exceeding ICHD-3 criteria for more than 3 months
Primary behavior	Avoidance, delayed intake, and non-adherence, often due to fear of side effects or concerns about developing MOH	Frequent, excessive consumption of acute medication in a vicious cycle to manage escalating headache pain
Pathophysiology	Repetitive and intense neuroinflammation from untreated attacks, induction and reinforcement of central sensitization via uncontrolled nociceptive input	 Dysfunction of endogenous pain modulation systems, neurotransmitter receptor downregulation, and exac- erbation of central sensitization
Clinical consequences	Progression of episodic to chronic migraine by increas- ing headache frequency, severity, and treatment resistance	The development of a new type of headache or worsening of a pre-existing one, leading to a more refractory state
Management strategy	Patient education to correct misconceptions, identifi- cation and resolution of treatment barriers, emphasis on early treatment, shared decision-making, a strat- ified care approach for acute treatment, and timely initiation of preventive therapy	Discontinuation of the overused medication (with inpatient care if needed), often with bridge therapy, and implementation of an effective preventive treatment plan

ICHD, International Classification of Headache Disorders; MOH, medication overuse headache.

robiological cascade creates a critical therapeutic window. Preclinical and clinical studies demonstrate that early intervention can block central sensitization, whereas delayed treatment is significantly less effective. For example, the response rate to sumatriptan is 93% in non-allodynic patients but only 15% in those who have already developed allodynia. Therefore, optimal use of acute medication is not merely for symptomatic relief but is a crucial strategy to prevent the neuroplastic changes that facilitate treatment resistance and disease progression.

2. Acute treatment guidelines to prevent underuse

To prevent the underuse that facilitates chronification, clinical guidelines advocate for a stratified care approach, which tailors therapy to attack severity rather than employing a step care model. This strategy is more effective and cost-efficient in reducing disability. For mild attacks, NSAIDs are recommended as initial therapy. For moderate to severe attacks, migraine-specific agents, triptans are first-line. Triptans should be administered at an adequate dose early in the attack, ideally within 60 minutes of onset, to optimize efficacy and prevent central sensitization. If the initial response is inadequate, options include combining a triptan with an NSAID or switching to an alternative triptan, as individual responses can vary. For patients in whom triptans are ineffective, poorly tolerated, or con-

traindicated due to cardiovascular risk, newer classes of medication, such as gepants (ubrogepant, rimegepant) or lasmiditan are recommended. 45,46 These agents provide effective alternatives without the vasoconstrictive properties of triptans. Patient education is crucial to prevent MOH, limiting simple analgesics, NSAIDs, or lasmiditan to fewer than 10 days per month, and combined analgesics or triptans to 8 days per month. Gepants may be preferable in individuals at higher risk for MOH, as there is currently no evidence linking gepants to MOH. 46

3. Preventive treatment guidelines to prevent underuse

Preventive therapy is a cornerstone of migraine management, aimed at reducing attack frequency, severity, and duration, which in turn decreases reliance on acute medications and lowers the risk of both underuse and overuse. The Prophylaxis is indicated for patients with 4 or more monthly headache days, significant disability despite acute treatment, or contraindications to acute therapies. To combat underuse, guidelines recommend selecting first-line agents with high-level evidence, such as beta-blockers, certain anticonvulsants, and CGRP-targeted therapies. Treatment should be initiated at a low dose and titrated slowly to improve tolerability and prevent premature discontinuation. A crucial element to prevent underuse is

allowing an adequate trial period before judging efficacy: at least 2 to 3 months for oral agents at a target dose, and 3 to 6 months for injectable therapies. If a treatment is ineffective or poorly tolerated, switching to an agent from a different class is recommended over abandonment of preventive strategy.

4. The role of novel targeted therapies in addressing underuse

The advent of CGRP-targeted therapies, including monoclonal antibodies (mAbs) and gepants, has significantly advanced migraine prevention by offering superior efficacy and tolerability compared to many traditional oral agents. 45 Their targeted mechanism results in higher response rates and fewer systemic side effects, which can improve adherence and persistence. Consequently, recent guidelines endorse anti-CGRP mAbs as a potential first-line option, removing the requirement to fail multiple older medications first. 45 However, significant barriers contribute to their underuse. High costs and restrictive reimbursement policies often limit access to patients with refractory migraine who have failed several other treatments.³⁴ For example, in South Korea, reimbursement for CGRP mAbs is restricted to patients with CM who have failed at least three oral preventives.²⁹ This is problematic, as a higher number of prior treatment failures is a negative predictor of response to anti-CGRP therapy.⁵⁰ Emerging evidence on response predictors such as lower baseline headache frequency and good response to triptans suggests that earlier initiation of these targeted therapies may optimize outcomes and prevent the progression of disease burden.

CONCLUSION

Migraine is a progressive neurological disorder, but its progression is often preventable. This review repositions MU not as a passive failure of treatment but as an active, iatrogenic risk factor for migraine chronification. The longheld clinical focus on MOH has, while important, overshadowed the reality that underuse and overuse are two facets of the same core problem: suboptimal disease management. Ineffective or delayed acute treatment allows for the establishment of central sensitization, which increases headache frequency and reduces therapeutic response.⁵

This, in turn, can lead patients toward more frequent medication intake, creating a direct pathway from underuse to overuse and a more refractory disease state.²³

Halting this progression requires a paradigm shift toward optimal use, guided by evidence-based principles. This includes the timely and effective application of acute therapies within the critical neurobiological window to prevent central sensitization, and the early consideration of preventive therapy for eligible patients to reduce the overall attack burden. A crucial component of this strategy is the ongoing assessment of treatment efficacy and tolerability, fostering a collaborative relationship between clinician and patient to identify and overcome barriers to adherence. Educating both healthcare providers and patients on the profound risks of underuse is paramount. By treating each migraine attack effectively and implementing preventive strategies proactively, it is possible to alter the natural history of the disease, prevent the cycle of underuse and overuse, and mitigate the long-term disability associated with CM.

AVAILABILITY OF DATA AND MATERIAL

The data presented in this study are available upon reasonable request from the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization: HSM, PWC; Writing-original draft: HSM; Writing-review & editing: HSM, PWC.

CONFLICT OF INTEREST

Heui Soo Moon received honoraria as a moderator/speaker/advisor from Abbvie Korea, Teva-Handok, Lundbeck Korea, Pfizer Korea, Oganon Korea, Dong-A Pharm, YuYu Pharm, SK Pharm, and Ildong Pharm. She was a site investigator for a multicenter trial sponsored by Biohaven Pharmaceuticals, Allergan Korea, and Ildong Pharmaceutical Company. She has received lecture honoraria from Eli Lilly and Company, Handok-Teva, and Ildong Pharmaceutical Company over the past 24 months. The other author has no other conflicts of interest to declare.

FUNDING STATEMENT

Not applicable.

ACKNOWLEDGMENTS

Not applicable.

REFERENCES

- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396:1204-1222.
- 2. Edmeads J, Mackell JA. The economic impact of migraine: an analysis of direct and indirect costs. Headache 2002;42:501-509.
- **3.** Bigal ME, Lipton RB. Modifiable risk factors for migraine progression. Headache 2006;46:1334-1343.
- Ornello R, Caponnetto V, Ahmed F, et al. Evidence-based guidelines for the pharmacological treatment of migraine, summary version. Cephalalgia 2025;45:3331024251321500.
- **5.** Rattanawong W, Rapoport A, Srikiatkhachorn A. Medication "underuse" headache. Cephalalgia 2024;44:3331024241245658.
- **6.** Mungoven TJ, Henderson LA, Meylakh N. Chronic migraine pathophysiology and treatment: a review of current perspectives. Front Pain Res (Lausanne) 2021;2:705276.
- **7.** Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain 2011;152:S2-S15.
- **8.** Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 2000;123:1703-1709.
- **9.** Suzuki K, Suzuki S, Shiina T, Kobayashi S, Hirata K. Central sensitization in migraine: a narrative review. J Pain Res 2022;15:2673-2682.
- **10.** Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache 2006;46 Suppl 4:S182-S191.
- Ho TW, Edvinsson L, Goadsby PJ. CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol 2010;6:573-582.
- 12. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 1990;28:183-187.
- **13.** Durham PL. Calcitonin gene-related peptide (CGRP) and migraine. Headache 2006;46 Suppl 1:S3-S8.

- Geppetti P, Capone JG, Trevisani M, Nicoletti P, Zagli G, Tola MR. CGRP and migraine: neurogenic inflammation revisited. J Headache Pain 2005;6:61-70.
- Bigal ME, Lipton RB. The differential diagnosis of chronic daily headaches: an algorithm-based approach. J Headache Pain 2007;8:263-272.
- **16.** Diener HC, Limmroth V. Medication-overuse headache: a worldwide problem. Lancet Neurol 2004;3:475-483.
- Kristoffersen ES, Lundqvist C. Medication-overuse headache: epidemiology, diagnosis and treatment. Ther Adv Drug Saf 2014;5:87-99.
- **18.** Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018;38:1-211.
- **19.** De Felice M, Ossipov MH, Porreca F. Update on medication-overuse headache. Curr Pain Headache Rep 2011;15:79-83.
- Srikiatkhachorn A, Tarasub N, Govitrapong P. Effect of chronic analgesic exposure on the central serotonin system: a possible mechanism of analgesic abuse headache. Headache 2000:40:343-350.
- **21.** Saper JR, Da Silva AN. Medication overuse headache: history, features, prevention and management strategies. CNS Drugs 2013;27:867-877.
- **22.** Vandenbussche N, Laterza D, Lisicki M, et al. Medication-over-use headache: a widely recognized entity amidst ongoing debate. J Headache Pain 2018;19:50.
- **23.** Lipton RB, Fanning KM, Serrano D, Reed ML, Cady R, Buse DC. Ineffective acute treatment of episodic migraine is associated with new-onset chronic migraine. Neurology 2015;84:688-695.
- 24. Diamond S, Bigal ME, Silberstein S, Loder E, Reed M, Lipton RB. Patterns of diagnosis and acute and preventive treatment for migraine in the United States: results from the American Migraine Prevalence and Prevention study. Headache 2007;47:355-363.
- **25.** Buse DC, Sakai F, Matharu M, et al. Characterizing gaps in the preventive pharmacologic treatment of migraine: multi-country results from the CaMEO-I study. Headache 2024;64:469-481.
- **26.** Wiley AT, Watson JC, Lehmann DN. Acute migraine headache: treatment strategies. Am Fam Physician 2025;111:317-327.
- 27. Hepp Z, Bloudek LM, Varon SF. Systematic review of migraine prophylaxis adherence and persistence. J Manag Care Pharm 2014;20:22-33.
- **28.** Buse DC, Lipton RB, Hallström Y, et al. Migraine-related disability, impact, and health-related quality of life among patients with episodic migraine receiving preventive treatment with ere-

- numab. Cephalalgia 2018;38:1622-1631.
- 29. Kim KY, Ko HY, Bea S, Lee HJ, Shin JY, Chu MK. Treatment patterns and persistence among patients newly diagnosed with migraine in South Korea: a retrospective analysis of health claims data. J Clin Neurol 2024;20:529-536.
- **30.** Lantéri-Minet M, Mick G, Allaf B. Early dosing and efficacy of triptans in acute migraine treatment: the TEMPO study. Cephalalgia 2012;32:226-235.
- Lipton RB, Hutchinson S, Ailani J, et al. Discontinuation of acute prescription medication for migraine: results from the Chronic Migraine Epidemiology and Outcomes (CaMEO) study. Headache 2019;59:1762-1772.
- **32.** Lipton RB, Bigal ME, Diamond M, et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology 2007:68:343-349.
- **33.** Ha H, Gonzalez A. Migraine headache prophylaxis. Am Fam Physician 2019;99:17-24.
- 34. Pascual J, Panni T, Dell'Agnello G, Gonderten S, Novick D, Evers S. Preventive treatment patterns and treatment satisfaction in migraine: results of the OVERCOME (EU) study. J Headache Pain 2023;24:88.
- **35.** Hepp Z, Dodick DW, Varon SF, Gillard P, Hansen RN, Devine EB. Adherence to oral migraine-preventive medications among patients with chronic migraine. Cephalalgia 2015;35:478-488.
- **36.** Hepp Z, Dodick DW, Varon SF, et al. Persistence and switching patterns of oral migraine prophylactic medications among patients with chronic migraine: a retrospective claims analysis. Cephalalgia 2017;37:470-485.
- **37.** Jackson JL, Cogbill E, Santana-Davila R, et al. A comparative effectiveness meta-analysis of drugs for the prophylaxis of migraine headache. PLoS One 2015;10:e0130733.
- **38.** Pringsheim T, Davenport WJ, Becker WJ. Prophylaxis of migraine headache. CMAJ 2010;182:E269-E276.
- **39.** Ornello R, Andreou AP, De Matteis E, Jürgens TP, Minen MT, Sacco S. Resistant and refractory migraine: clinical presentation, pathophysiology, and management. EBioMedicine 2024;99:104943.

- **40.** Rimmele F, Müller B, Becker-Hingst N, et al. Medication adherence in patients with cluster headache and migraine: an online survey. Sci Rep 2023;13:4546.
- **41.** Young WB, Park JE, Tian IX, Kempner J. The stigma of migraine. PLoS One 2013:8:e54074.
- **42.** Bloudek LM, Stokes M, Buse DC, et al. Cost of healthcare for patients with migraine in five European countries: results from the International Burden of Migraine Study (IBMS). J Headache Pain 2012;13:361-378.
- **43.** Matsuzawa Y, Lee YSC, Fraser F, et al. Barriers to behavioral treatment adherence for headache: an examination of attitudes, beliefs, and psychiatric factors. Headache 2019;59:19-31.
- 44. Puledda F, Sacco S, Diener HC, et al. International Headache Society global practice recommendations for the acute pharmacological treatment of migraine. Cephalalgia 2024;44:3331024241252666.
- 45. Ailani J, Burch RC, Robbins MS; Board of Directors of the American Headache Society. The American Headache Society Consensus Statement: update on integrating new migraine treatments into clinical practice. Headache 2021;61:1021-1039.
- 46. Moon HS, Chung PW, Kim BK. New targeted drugs for acute treatment of migraine. Korean J Headache 2023;24:56-65.
- 47. Silberstein SD, Holland S, Freitag F, et al. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 2012;78:1337-1345.
- **48.** Puledda F, Sacco S, Diener HC, et al. International Headache Society global practice recommendations for preventive pharmacological treatment of migraine. Cephalalgia 2024;44:3331024241269735.
- **49.** Ryu S. Beyond the pain: rethinking migraine care with the RE-LIEF PLAN approach. Headache Pain Res 2025;26:1-2.
- 50. Hong JB, Lange KS, Overeem LH, Triller P, Raffaelli B, Reuter U. A scoping review and meta-analysis of anti-CGRP monoclonal antibodies: predicting response. Pharmaceuticals (Basel) 2023;16:934.

Original Article

Headache Pain Res 2025;26(3):218-225 pISSN: 3022-9057 • eISSN: 3022-4764 https://doi.org/10.62087/hpr.2025.0013

Trigeminal Autonomic Cephalalgias Following Unilateral Dorsolateral Medullary Infarction: A Case Series and Literature Review

Jae-Myung Kim[®], Hak-Loh Lee[®], You-Ri Kang[®], Joon-Tae Kim[®], Seung-Han Lee[®]

Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea

Abstract

Purpose: Secondary trigeminal autonomic cephalalgias (TACs) are typically associated with posterior fossa abnormalities, such as tumors and vascular malformations. However, TACs following brainstem infarctions are rarely reported. This study aimed to characterize the clinical and anatomical features of TACs after unilateral dorsolateral medullary infarction.

Methods: We analyzed four patients with dorsolateral medullary infarction who developed secondary TACs, diagnosed using the International Classification of Headache Disorders, third edition criteria. All patients underwent detailed neurological examinations and neuroimaging, including diffusion-weighted magnetic resonance imaging and magnetic resonance angiography. Additionally, five published cases were identified through a literature review and analyzed in conjunction with our cohort.

Results: All patients exhibited stabbing or electric shock-like pain in the ipsilateral periorbital, hemifacial, and temporal regions. Headaches developed weeks to months post-stroke with brief attacks (1–2 minutes) occurring 1–5 times daily. Lacrimation and conjunctival injection were common. Three patients were diagnosed with short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT), while a fourth had short-lasting unilateral neuralgiform with cranial autonomic symptoms (SUNA). Each patient, as well as four of the five from the literature, exhibited ipsilateral facial sensory loss, suggesting involvement of the trigeminal spinal tract and nucleus. Delayed headache onset was more frequent in persistent cases.

Conclusion: Headache characteristics were more consistent with SUNCT/SUNA than with typical cluster headaches. Careful neurological examination is essential to detect focal signs and guide neuroimaging for identifying secondary causes. Clinicians should consider secondary TACs in patients with new-onset SUNCT/SUNA and focal brainstem signs.

Keywords: Brain stem infarctions, Headache, Lateral medullary syndrome, Trigeminal autonomic cephalalgias

Received: August 10, 2025; Revised: September 8, 2025; Accepted: September 17, 2025

Correspondence: Seung-Han Lee, M.D., Ph.D.

Department of Neurology, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea Tel: +82-62-220-6274, Fax: +82-62-228-3461, E-mail: nrshlee@chonnam.ac.kr

^{© 2025} The Korean Headache Society

[®]This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Trigeminal autonomic cephalalgias (TACs) are a group of primary headache syndromes characterized by severe, short-lasting, unilateral headaches accompanied by paroxysmal cranial autonomic symptoms. Although several cases of secondary TACs have been reported, a definitive causal relationship between the underlying pathophysiology and the associated structural lesion in most cases remains uncertain.^{2,3} Short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing (SUNCT) and short-lasting unilateral neuralgiform with cranial autonomic symptoms (SUNA) are categorized under TACs and are typically considered primary headache disorders. Although rare, secondary causes, including structural lesions such as neoplasms, vascular malformations, demyelinating plaques, and infarctions, have been documented, particularly in patients with atypical features or poor treatment response.^{4,5} A comprehensive review by Cao et al. reported that approximately 15%-20% of SUNCT/SUNA cases may also present a secondary etiology, most commonly involving lesions in the pons, medulla, or cavernous sinus. According to Kang and Cho, 4 structural abnormalities have been observed in some patients with SUNCT or SUNA, especially in those presenting with neurological signs or unusual headache characteristics. These findings underscore the importance of neuroimaging and detailed neurological examinations in patients with SUNCT/SUNA to identify potential secondary causes that may significantly influence diagnosis, management, and prognosis.

However, reports of secondary TACs remain limited, and additional case-based observations are needed to provide a more comprehensive understanding of the underlying mechanisms and clinical course. 4,6-9 Thus, this study represents a case series of patients with secondary TACs following unilateral dorsolateral medullary infarction, aimed at clarifying the clinical characteristics and anatomical substrates of this patient subset.

MATERIALS AND METHODS

1. Ethics approval and consent to participate

This study was approved by the Institutional Review Board

(IRB) of Chonnam National University Hospital (IRB No. CNUH-2025-258), and all patients provided written informed consent for publication.

2. Participants and procedures

The study subjects were consecutively enrolled from patients who visited Chonnam National University Hospital between January 2015 and April 2025. The inclusion criteria in this study were as follows: 1) a unilateral high signal intensity lesion involving the dorsolateral medulla suggestive of cerebral infarction on brain magnetic resonance imaging (MRI) including diffusion-weighted imaging (DWI); 2) a headache that developed after the index infarction, fulfilling the diagnostic criteria of TACs according to the International Classification of Headache Disorders, third edition (ICHD-3). Patients with a prior history of chronic headache, underlying structural brain lesions unrelated to infarction, or incomplete imaging data were excluded.

All patients underwent emergency brain MRI on admission as part of the institutional acute stroke protocol. The MRI protocol consisted of DWI (slice thickness, 4 mm), fluid-attenuated inversion recovery, gradient echo imaging, and time-of-flight magnetic resonance angiography (MRA) sequentially.

Additionally, all patients received detailed neurological examinations at the time of the initial event. Baseline demographics and headache characteristics, including timing of onset, frequency, duration, location, quality, and associated cranial autonomic features, were systematically evaluated through clinical interviews and chart reviews. SUNCT or SUNA diagnoses were performed in accordance with the ICHD-3 criteria (Table 1).

3. Data collection

To identify previously reported cases of secondary SUNCT/SUNA associated with dorsolateral medullary infarction, we searched the PubMed and MEDLINE databases up to April 2025 using the terms "SUNCT," "SUNA," "secondary," and "medullary infarction." Inclusion was limited to peer-reviewed case reports or case series with radiologically confirmed medullary infarcts and headache features consistent with TACs.

Table 1. Diagnostic criteria of SUNCT/SUNA according to the ICHD-3

SNUHA

- A. At least 20 attacks fulfilling criteria B-D
- B. Moderate or severe unilateral head pain, with orbital, supraorbital, temporal, and/or other trigeminal distribution, lasting 1–600 seconds and occurring as single stabs, series of stabs, or in a saw-tooth pattern
- C. At least one of the following five cranial autonomic symptoms or signs, ipsilateral to the pain:
 - 1. conjunctival injection and/or lacrimation
 - 2. nasal congestion and/or rhinorrhoea
 - 3. eyelid oedema
 - 4. forehead and facial sweating
 - 5. forehead and facial flushing
 - 6. sensation of fullness in the ear
 - 7. miosis and/or ptosis
- D. Occurring with a frequency of at least once daily
- E. Not better accounted for by another ICHD-3 diagnosis.

SUNCT

- A. Attacks fulfilling criteria for SNUHA, and criterion B below
- B. Both of the following are ipsilateral to the pain:
 - 1. conjunctival injection
 - 2. lacrimation (tearing)

SUNA

- A. Attacks fulfilling criteria for SNUHA, and criterion B below
- B. Only one or neither of conjunctival injection or lacrimation (tearing).

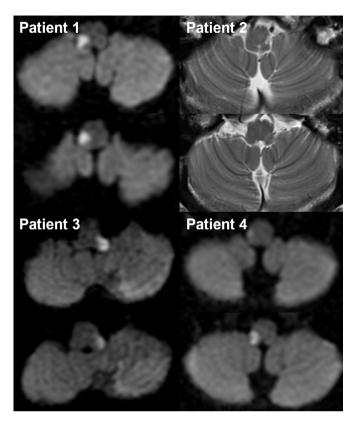
SUNCT, short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing; SUNA, short-lasting unilateral neuralgiform with cranial autonomic symptoms; ICHD-3, International Classification of Headache Disorders, third edition; SNUHA, short-lasting unilateral neuralgiform headache attacks.

RESULTS

Among the 231 patients diagnosed with dorsolateral medullary infarction during the study period, 204 completed at least 6 months of follow-up after the index stroke and were eligible for analysis. Of these, four patients (three males; mean age, 58.3±8.4 years; 4/204 [1.96%]) developed headache syndromes consistent with TACs and were included in this study. Baseline demographics, characteristics of the index stroke, MRI-identified lesions, and headache characteristics are summarized in Table 2 and Figure 1. All patients exhibited either stabbing (50%) or electric shocklike pain in the ipsilateral periorbital, hemifacial, and temporal regions. Headaches developed 2.5 to 4 months after the initial infarction (mean, 3 months) with brief attacks

lasting 1–2 minutes, occurring 1–5 times daily. Lacrimation (100%) and conjunctival injection (75%) were common cranial autonomic symptoms, all of which were observed on the ipsilateral side. According to the diagnostic criteria of ICHD-3, three patients (75%) were compatible with a SUNCT diagnosis, while one experienced SUNA, rather than a typical trigeminal neuralgia (TN) or cluster headache. The headaches persisted for several years in three patients (75%) despite empirical treatment with medications including gabapentin, amitriptyline, or lithium.

Notably, all patients showed at least one focal neurological sign during the acute stroke phase, which preceded the onset of the headache. These included sensory loss on the ipsilateral hemiface (100%), sensory loss on the contralateral hemibody, ipsilateral limb ataxia and/or truncal ataxia, and spontaneous horizontal and torsional nystagmus beating toward the contralesional side. Based on the neuroimaging results of the patients, a clinico-anatomical correlation analysis invariably revealed the involvement of the trigeminal spinal tract and nucleus, as well as the adjacent spinothalamic tract, inferior cerebellar peduncle, and vestibular nucleus.


Stroke mechanism analysis using the Trial of Org 10172 in Acute Stroke Treatment classification revealed small vessel occlusion in two patients, large artery atherosclerosis in one patient, and stroke of other determined etiology (i.e., vertebral artery [VA] dissection) in one patient. MRA findings varied: one patient had VA stenosis, one had VA hypoplasia, one had VA dissection, while another showed no vascular abnormality (Table 2).

From a literature review, we identified five additional published cases of secondary SUNCT/SUNA associated with dorsolateral medullary infarction (Table 2). ^{6,7,10-12} Compared to our case series, the onset of headache in these cases varied, ranging from the day of stroke to 6 months later (mean, 1.43 months), indicating considerable heterogeneity. ^{6,7,10-12} In three cases, the frequency of pain exceeded 10 episodes per day. ^{7,11,12} Otherwise, the duration, character, and location of pain were similar to those observed in our cases. Four of the five cases provided detailed neurological findings, and each of these four exhibited ipsilateral facial sensory disturbance (4/4, 100%). ^{6,10-12} Among the three patients with available angiographic data, VA stenosis, dissection, and occlusion were each observed in one patient. ^{6,7,11}

Table 2. Clinical characteristics of TACs secondary to dorsolateral medullary infarction: present cases and literature review

	5		נ	os secondary		5			2							
					Index	Index stroke					Headache characteristics	character	istics			Diagno-
Case	Age (yr)	Sex	Risk factor	TOAST	Angiogra- phy	MRI lesion	Associated neurological signs	Onset after stroke	Side	Location	Duration	Nature	Frequency (times)	Outcome	Autonomic symptoms	sis of headache (ICHD-3)
Present cases Patient 1	20	Male	HTN, DL SVO	SVO	Normal	Rt. LMI	SL (i-F and c-B), AT (i-L and T), hoarseness	3 mo		Periorbital, hemifacial, and temporal	1-2 min Stab- bing	Stab- bing	3-4/day	Persistent	LC, Cl, rhinor- SUNCT rhea	SUNCT
Patient 2	57	Male		SVO	VA hypo- plasia	Lt. LMI	SL (i-F and c-B), DysP, AT (i-L), vertigo, NY	2.5 mo	-	Periorbital, hemifacial, and temporal	1-2 min Stab- bing	Stab- bing	1-5/day	Resolved after several years	LC, CI	SUNCT
Patient 3	56	Male	Lipid	LAA	VA severe Lt. LMI steno- sis	Lt. LMI	SL (i-F and c-B), AT (T), HS, vertigo, NY	4 mo	-	Periorbital, hemifacial, and temporal	<1 min	Electric shock- like	1-5/day	Persistent	LC, Cl, nasal congestion	SUNCT
Patient 4	20	Female	HTN, HCC, RA	SOD	VA dis- section	Rt. LMI	SL (i-F and c-B), AT (i-L and T), HS, vertigo, NY	2.5 mo	-	Periorbital, hemifacial, and temporal	<1 min	Electric shock- like	1-5/day	Persistent	27	SUNA
Published cases	i		į		;	i	í - :	(- : -	Ç.	;	(! :
Rodrigues et al. (2007) ¹²	54	Male	Z	N/A	N/A	Rt. LMI	SL (i-F and c-B), AT (i-T), DysA	6 mo	_	Orbital	20 sec	Α A	>10/hr	Persistent	[C, C]	SUNCI
Jin et al. (2016) ⁶	64	Male	Ž V V V V	LAA	VA occlu- sion	Lt. LMI	SL (i-F), HS, AT (i-T), vertigo	13 day	-	Periorbital	3-10 sec	Stab- bing	1-4/day	Resolved after 19 days	LC, Cl, rhinor- SUNCT rhea	SUNCT
Lambru et al. $(2017)^7$	28	Male	Z H	SOD	VA dis- section	Rt. LMI (hemor- rhagic)	N/A	21 day	-	Periorbital – temporal radiating to cheek/jaw	5-20 sec	Stab- bing, sharp	12–15 (up to 50– 60)/day	Persistent	LC, Cl, pto- sis, eyelid edema, rhinorrhea	SUNCT and TN
Lei et al. (2020) ¹¹	44	Male	None	LAA	VA steno- sis	Rt. LMI	SL (i-F and c-B), DysP, DysA, hiccup, hoarse- ness, HS, AT (i-L and T), hemiparesis (i), NY, vertigo, gag reflex ↓	0 day*	-	Hemfacial, temporal, occipital	10-180 Tearing sec	Tearing	>10/day	Resolved after 1 month	congestion	SUNCT
Gadah et al. (2025) ¹⁰	~40	~40 Male	None	A Z	X A	Rt. LMI	SL (i-F; V1 and V2), hand numbness (i)	4 day		Hemifacial	1 min	Burning >4/day	>4/day	Improved after 1 month, but persisted until 1 year	LC, Cl, nasal discharge, facial grimacing with facial edema	SUNCT
Total (n=9)		Male (n=8)					SL (i-F)=8 of 9	0 day*- 6 mo	i (100%)					Per- sistent=5, resolved=4		SUNCT=8, SUNA=1
TAC trideminal autonomic cenhalaldia: TOAST Trial of Ord	tonor	edua oin	In Idia TO	ACT Tria		1172 in Ac	1017) in Autha Chraka Trashmant: MDI marmatin reconsence imadian ICAD 2 International Placefilmation of Haadaaha Dicardane third	MDI -	ragarit		JHOI -	motal C	otional Olas	l jo acitooljioo	Hoodsche Die	prodore third

IAC, trigeminal autonomic cephalalgia; TOAST, Trial of Org 10172 in Acute Stroke Treatment; MRI, magnetic resonance imaging, ICHD-3, International Classification of Headache Disorders, third L. right; LM, hypertension; DL, dyslipidemia; SVO, small vessel occlusion; Rt., right; LMI, lateral medullary infarction; SL, sensory loss; i, ipsilateral; F, face; c, contralateral; B, body; AT, ataxia; L, limb; T, trunk; LC, lacrimation; Gl, conjunctival injection; SUNCT, short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing; VA, vertebral artery; Lt., left; DysP, dysphagia; NY, nystagmus; LAA, large artery atherosclerosis; HS, Horner's syndrome; HCC, hepatocellular carcinoma; RA, rheumatoid arthritis; SOD, stroke of other determined etiology; SUNA, short-lasting unilateral neuralgiform with cranial autonomic symptoms; N/A, not available; DysA, dysarthria; DM, diabetes mellitus; TN, trigeminal neuralgia. *Same day as stroke onset.

Figure 1. Neuroimaging of the four patients who presented with dorsolateral medullary infarction. Diffusion-weighted (patients 1, 3, and 4) or T2-weighted (patient 2) brain magnetic resonance imaging shows high signal intensity lesions involving the unilateral dorsolateral medulla. An additional lesion in the ipsilateral cerebellar hemisphere is also observed in patient 3.

We analyzed the time of headache onset after the index stroke and the persistence of the headache in our four cases and five previously reported cases (Table 3). Among these nine patients, five experienced persistent symptoms, and four showed resolution. In the persistent group, headache onset occurred at a mean of 3.24 months (range, 0.7–6 months) after the stroke. In contrast, the resolved group showed a mean onset time of 0.76 months (range, 0–2.5 months).

DISCUSSION

Secondary TACs are relatively uncommon and are related to a wide range of structural brain lesions, including neoplasms, vascular malformations, demyelinating diseases, arterial dissections, and infarctions. ^{3,6,7,9,11,13,14} Among these,

dorsolateral medullary infarction—also known as Wallenberg syndrome—is a rare but increasingly recognized etiology of secondary TACs, particularly those resembling SUNCT and SUNA phenotypes. ^{6,7,10-13}

In our case series, all four patients developed headache syndromes, consistent with secondary TACs, 2.5 to 4 months after unilateral dorsolateral medullary infarction. The pain was characterized by brief, stabbing or electric shock-like episodes in the ipsilateral periorbital and hemifacial regions, accompanied by prominent cranial autonomic symptoms such as lacrimation and conjunctival injection. The clinical features in three patients met the ICHD-3 diagnostic criteria for SUNCT, while one patient met the criteria for SUNA. This predominance of SUNCT/ SUNA, rather than cluster headache, is consistent with prior reports of brainstem-related secondary TACs. 3,6,7,9,11,13 Conversely, differentiating between TN-like features and SUNCT/SUNA is often clinically challenging because of overlapping clinical features, as illustrated by a case in our literature review by Lambru et al.,7 which demonstrated coexisting SUNCT- and TN-like features due to dorsolateral medullary hemorrhagic infarction. 4,15,16 In Lambru et al., the patient with dorsolateral medullary infarction expected two distinct types of attacks: one with short-lasting stabbing pain (5-20 seconds) accompanied by cranial autonomic symptoms such as lacrimation and conjunctival injection, fulfilling the diagnostic criteria of SUNCT; another type, similarly localized, but triggered by innocuous stimuli (e.g., touch, wind), lacking autonomic signs, and featuring a dull post-attack ache, consistent with TN. The coexistence of these patterns led the authors to diagnose concurrent SUNCT and TN, rather than a single disorder. Traditionally, TN is characterized by the involvement of second or third divisions in the trigeminal nerve, a refractory period following exposure to triggers, and the absence of cranial autonomic symptoms. 4,7,15,16 In contrast, SUNCT/ SUNA typically involves the first division of the trigeminal nerve, presents with longer-lasting attacks (up to 600 seconds), lacks a refractory period, and prominently features autonomic symptoms. 4,7,15,16 However, several cases of TN may occasionally present with mild cranial autonomic features, meaning the presence or absence of a refractory period can be difficult to assess, especially in patients with complex stroke-related presentations. 7,15,16 In our current series, all patients reported cranial autonomic symptoms,

Table 3. Comparison of clinical features between persistent and resolved secondary TACs following dorsolateral medullary infarction

Group	Case (Ref.)	Headache onset after stroke	Headache duration	Diagnosis	Tx. regimen (max. daily dose)	Duration (mo)	Associated neurological signs
Persistent (n=5)	Patient 1 (this study)	3 mo	Persistent	SUNCT	VER 80 mg/GBP 800 mg/LIT 600 mg/ VPA 250 mg	42/96/66/72	SL (i-F and c-B), AT (i-L and T), hoarseness
	Patient 3 (this study)	4 mo	Persistent	SUNCT	VER 180 mg/AMI 5 mg/GBP 300 mg	87/90/75	SL (i-F and c-B), AT (T), HS, vertigo, NY
	Patient 4 (this study)	2.5 mo	Persistent	SUNA	PGB 150 mg/GBP 800 mg	74/118	SL (i-F and c-B), AT (i-L and T), HS, vertigo, NY
	Rodrigues et al. (2007) ¹²	6 mo	Persistent	SUNCT	VER*/CBZ*/LTG*	N/A	SL (i-F and c-B), AT (i-T), DysA
	Lambru et al. (2017) ⁷	21 day	Persistent	SUNCT/TN	CBZ 800 mg/OXC 1,350 mg/GBP 900 mg/AMI 40 mg/LTG 50 mg/DLX 30 mg	N/A	N/A
Mean	-	3.24 mo	-	-			-
Resolved (n=4)	Patient 2 (this study)	2.5 mo	Resolved	SUNCT	GBP 400 mg	60	SL (i-F and c-B), DysP, AT (i-L), vertigo, NY
	Jin et al. (2016) ⁶	13 day	Resolved	SUNCT	No Tx.	N/A	SL (i-F), HS, AT (i-T), vertigo
	Lei et al. (2020) ¹¹	0 day	Resolved	SUNCT	N/A	N/A	SL (i-F and c-B), DysP, DysA, hiccup, hoarse- ness, HS, AT (i-L and T), hemiparesis (i), NY, vertigo, gag reflex ↓
	Gadah et al. (2025) ¹⁰	4 day	Resolved	SUNCT	LTG*	12	SL (i-F; V1 and V2), hand numbness (i)
Mean	-	0.76 mo	-	-			-

TAC, trigeminal autonomic cephalalgia; Ref., reference; Tx., treatment; max., maximum; SUNCT, short-lasting unilateral neuralgiform headache with conjunctival injection and tearing; VER, verapamil; GBP, gabapentin; LIT, lithium; VPA, valproic acid; SL, sensory loss; i, ipsilateral; F, face; c, contralateral; B, body; AT, ataxia; L, limb; T, trunk; AMI, amitriptyline; HS, Horner's syndrome; NY, nystagmus; SUNA, short-lasting unilateral neuralgiform with cranial autonomic symptoms; PGB, pregabalin; CBZ, carbamazepine; LTG, lamotrigine; N/A, not available; DysA, dysarthria; OXC, oxcarbazepine; DLX, duloxetine; TN, trigeminal neuralgia; DysP, dysphagia.

and none had a definite refractory period. Moreover, none of the attacks were clearly stimulus-provoked in a way consistent with TN. Based on these clinical characteristics, these patients were diagnosed with SUNCT/SUNA rather than TN.

While some post-stroke pain syndromes may emerge in the acute phase, others, including central post-stroke pain, can have a delayed onset. ¹⁷ Similarly, secondary SUNCT/SUNA in our series tended to develop in the subacute or even chronic phase following the index infarction. Notably, our findings suggest that the timing of headache onset may have prognostic implications. Among the nine patients analyzed (our four cases and five from the literature), those with persistent headache symptoms had a later onset (mean, 3.24 months) compared to those whose symptoms eventually resolved (mean, 0.76 months). This

observation raises the possibility that delayed onset is associated with a greater risk of chronification, potentially reflecting distinct pathophysiological mechanisms, such as central sensitization or maladaptive reorganization, within trigeminal–autonomic pathways. These findings underlie the importance of temporal profiling in secondary TACs and emphasize the need for prospective studies with larger cohorts to clarify the temporal relationship between infarction and headache onset in secondary TACs.

Although the clinical presentation of a cluster headache and SUNCT/SUNA can be quite similar, the headache duration, clustering pattern, and treatment responses (e.g., oxygen therapy or indomethacin) can be used to differentiate these conditions. ^{2,4,20} While the precise mechanisms remain unclear, the characteristic clustering of pain in cluster headache suggests that, in addition to involvement

^{*}Exact medication doses were not reported in the original case reports.

of the trigeminal spinal tract and nucleus at the medullary level, dysfunctions of the hypothalamus and the broader trigeminal-autonomic network may also play a significant role. 21-23 Consequently, we speculate that the more complex pathophysiology of cluster headache may explain the lower observed incidence of this condition compared to SUNCT/SUNA in cases of isolated dorsolateral medullary infarctions. Nonetheless, further research is warranted to prove our hypothesis.

A cerebral infarction involving the dorsolateral medulla, commonly referred to as Wallenberg syndrome, presents with a constellation of neurological signs, including ipsilateral facial sensory disturbances, contralateral hemibody sensory loss, ataxia, vertigo, and Horner's syndrome, depending on the specific anatomical structures involved.²⁴ In our series, all four patients exhibited ipsilateral facial sensory deficits (Table 2). Among the five previously published cases of TACs associated with dorsolateral medullary infarction, four provided detailed neurological findings, and all of these described ipsilateral facial sensory loss (Table 2). This consistent pattern across both our cases and the literature strongly implicates the spinal trigeminal tract and nucleus as the key anatomical structures involved in the development of secondary TACs. Although the precise pathomechanisms underlying secondary TACs in dorsolateral medullary infarction remain to be elucidated, it is thought that disruption of the spinal trigeminal tract and nucleus within the dorsolateral medulla may lead to disinhibition or aberrant activation of the trigeminal-autonomic reflex arc. 6,18 This may represent the underlying issue attached to the SUNCT or SUNA phenotypes observed in these patients. Given the convergence of nociceptive and autonomic pathways in this region, the spinal trigeminal complex appears to serve as a critical neuroanatomical substrate for secondary TACs following medullary infarction.^{6,7,13}

Importantly, all of our patients exhibited additional focal neurological signs, including crossed sensory loss, nystagmus, ataxia, and Horner's syndrome, at the time of the index stroke. These neurological features preceded or accompanied the onset of a headache, providing critical diagnostic clues to a secondary etiology. This stands in contrast to other common secondary TACs such as those caused by pituitary tumors or vascular malformations, where diagnosis is frequently delayed for several months to years, mostly due to isolated headache symptoms with-

out overt focal neurological signs. 2,25

This study has several limitations. First, this study was not a prospectively designed trial with a predefined, systematic treatment approach for secondary TACs, particularly SUNCT and SUNA. Instead, treatment strategies were heterogeneous across cases, largely reflecting stroke-centered management approaches. Furthermore, patients were initially classified under the broader category of TACs rather than being specifically diagnosed with SUNCT or SUNA. Although the current literature suggests using lamotrigine as a first-line preventive treatment for SUNCT/ SUNA, none of our four patients received this therapy. Notably, in a previously reported case, ¹⁰ lamotrigine was associated with substantial symptom resolution. This observation suggests that earlier recognition and targeted preventive therapy may influence long-term outcomes in similar cases.

In conclusion, dorsolateral medullary infarction can be a causative lesion for secondary TACs. Based on our results, most patients exhibited a SUNCT or SUNA phenotype and consistently presented with ipsilateral hemifacial sensory loss. Moreover, the delayed onset of headache was often associated with a reduced response to treatment and persistent headache. Thus, future studies should further investigate the pathophysiological mechanisms and prognostic implications of delayed-onset secondary TACs in brainstem infarctions.

AVAILABILITY OF DATA AND MATERIAL

The data presented in this study are available upon reasonable request from the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization: JMK, SHL; Data curation: JMK, HLL, YRK, JTK; Formal analysis: SHL; Investigation: JMK, HLL, YRK, JTK; Validation: SHL; Writing-original draft: JMK, SHL; Writing-review & editing: JMK, HLL, YRK, JTK, SHL.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

FUNDING STATEMENT

Not applicable.

ACKNOWLEDGMENTS

Not applicable.

REFERENCES

- Goadsby PJ, Lipton RB. A review of paroxysmal hemicranias, SUNCT syndrome and other short-lasting headaches with autonomic feature, including new cases. Brain 1997;120:193-209.
- Cittadini E, Matharu MS. Symptomatic trigeminal autonomic cephalalgias. Neurologist 2009;15:305-312.
- **3.** Liu J, Xiao S, Yang F, et al. Symptomatic trigeminal autonomic cephalalgias in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2023;74:104722.
- Kang MK, Cho SJ. SUNCT, SUNA and short-lasting unilateral neuralgiform headache attacks: debates and an update. Cephalalgia 2024;44:3331024241232256.
- Cao Y, Yang F, Dong Z, Huang X, Cao B, Yu S. Secondary short-lasting unilateral neuralgiform headache with conjunctival injection and tearing: a new case and a literature review. J Clin Neurol 2018;14:433-443.
- **6.** Jin D, Lian YJ, Zhang HF. Secondary SUNCT syndrome caused by dorsolateral medullary infarction. J Headache Pain 2016;17:12.
- Lambru G, Trimboli M, Tan SV, Al-Kaisy A. Medullary infarction causing coexistent SUNCT and trigeminal neuralgia. Cephalalgia 2017;37:486-490.
- **8.** Ordás CM, Cuadrado ML, Simal P, et al. Wallenberg's syndrome and symptomatic trigeminal neuralgia. J Headache Pain 2011:12:377-380.
- Penart A, Firth M, Bowen JR. Short-lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCT) following presumed dorsolateral brainstem infarction. Cephalalgia 2001;21:236-239.
- Gadah AA, AbaAlkhail AB, Khatri IA. Onset of secondary SUNCT syndrome with concomitant occipital neuralgia after dorsal medullary infarction. BMJ Case Rep 2025;18:e264684.
- **11.** Lei Q, Lv J, Kang B, et al. Comorbid SUNCT syndrome and Opalski Syndrome caused by dorsolateral medullary infarction.

- Front Neurol 2020:11:52.
- **12.** Rodrigues GG, Bordini CA, Dach F, Eckeli A, Speciali JG. SUNCT syndrome: report of a possible symptomatic case. Arq Neuropsiquiatr 2007;65:852-854.
- Galende AV, Camacho A, Gomez-Escalonilla C, et al. Lateral medullary infarction secondary to vertebral artery dissection presenting as a trigeminal autonomic cephalalgia. Headache 2004;44:70-74.
- **14.** Kim JT, Lee SH, Choi SM, et al. Spontaneous vertebral artery dissection mimicking cluster headache. Cephalalgia 2008;28:671-673.
- **15.** Lambru G, Rantell K, Levy A, Matharu MS. A prospective comparative study and analysis of predictors of SUNA and SUNCT. Neurology 2019;93:e1127-e1137.
- **16.** Lambru G, Zakrzewska J, Matharu M. Trigeminal neuralgia: a practical guide. Pract Neurol 2021;21:392-402.
- Liampas A, Velidakis N, Georgiou T, et al. Prevalence and management challenges in central post-stroke neuropathic pain: a systematic review and meta-analysis. Adv Ther 2020;37:3278-3291.
- **18.** Altavilla R, Landi D, Altamura C, et al. Dorsolateral medullary ischemic infarction causing autonomic dysfunction and headache: a case report. J Headache Pain 2012;13:327-330.
- 19. Sessle BJ; International Association for the Study of Pain. Orofacial pain: recent advances in assessment, management, and understanding of mechanisms. IASP Press; 2014.
- **20.** Kim M, Yu JK, Kim YH. Update on cluster headaches: from genetic to novel therapeutic approaches. Headache Pain Res 2024;25:42-53.
- **21.** May A, Bahra A, Büchel C, Frackowiak RS, Goadsby PJ. Hypothalamic activation in cluster headache attacks. Lancet 1998;352;275-278.
- **22.** Pringsheim T. Cluster headache: evidence for a disorder of circadian rhythm and hypothalamic function. Can J Neurol Sci 2002;29:33-40.
- **23.** May A, Schwedt TJ, Magis D, Pozo-Rosich P, Evers S, Wang SJ. Cluster headache. Nat Rev Dis Primers 2018;4:18006.
- 24. Kim JS. Pure lateral medullary infarction: clinical-radio-logical correlation of 130 acute, consecutive patients. Brain 2003;126:1864-1872.
- **25.** Chowdhury D. Secondary (symptomatic) trigeminal autonomic cephalalgia. Ann Indian Acad Neurol 2018;21:S57-S69.

Case Report

Headache Pain Res 2025;26(3):226-231 pISSN: 3022-9057 • eISSN: 3022-4764 https://doi.org/10.62087/hpr.2025.0020

Isolated Dental and Lower-Facial Pain Mimicking Trigeminal Neuropathy: An Indirect Carotid-Cavernous Fistula

Byoungchul Choi[®], Chulho Kim[®], Sung-Hwan Kim[®], Jong-Hee Sohn[®]

Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea

Abstract

Carotid-cavernous fistula (CCF) is a pathological arteriovenous communication in which carotid arterial flow is diverted into the cavernous sinus. Clinical manifestations typically include ocular signs, cranial neuropathies, and headache. Neurologic deficits most commonly reflect involvement of cranial nerves III, IV, V1/V2, and VI within or along the cavernous sinus; in contrast, isolated trigeminal presentations are rare, and V3 involvement is particularly uncommon. A 69-year-old woman presented with isolated V2/V3-territory pain, perceived as molar, gingival, and lower facial discomfort. Her symptoms were initially misattributed to trigeminal neuropathy or dental pathology. Subsequently, she developed horizontal diplopia, and bedside testing localized a right abducens palsy. Brain magnetic resonance imaging revealed findings suspicious for a CCF, which was angiographically confirmed as an indirect CCF. Following embolization, the patient's pain markedly improved, implicating the CCF as the source of the V2/V3 symptoms. This case highlights that an atypical, trigeminal-predominant onset—even with pain limited to the V2/V3 distribution—may indicate an indirect CCF. When atypical trigeminal neuropathy is suspected and dental or other peripheral causes are excluded, clinicians should consider the possibility of a CCF.

Keywords: Abducens nerve diseases, Carotid-cavernous sinus fistula, Trigeminal nerve diseases

INTRODUCTION

A carotid-cavernous fistula (CCF) is defined as an abnormal shunt between the carotid arterial circulation and the venous system of the cavernous sinus. CCFs can be classified into two main types: direct and indirect (or dural). The direct type refers to a high-flow fistulous communication where the cavernous portion of the internal carotid artery (ICA) ruptures directly into the cavernous

sinus. In contrast, the indirect type is characterized by low-flow fistulas supplied by dural branches of the ICA and/or external carotid artery (ECA) that drain into the cavernous sinus via the meningeal network. Characteristic manifestations can be organized as follows: ocular symptoms/signs—conjunctival hyperemia, orbital congestion with proptosis or chemosis, increased intraocular pressure, orbital bruit, pulsatile exophthalmos, orbital pain, and blurry vision; neurologic symptoms—diplopia from cranial nerve

Received: September 30, 2025; Revised: October 12, 2025; Accepted: October 12, 2025

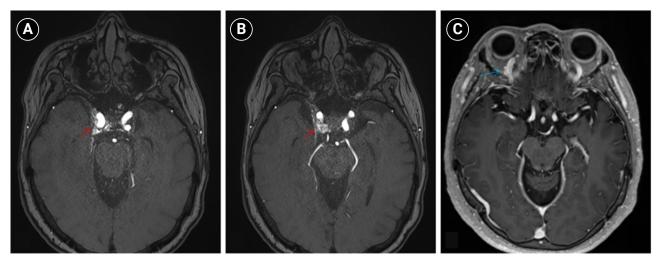
Correspondence: Jong-Hee Sohn, Ph.D.

Department of Neurology, Chuncheon Sacred Heart Hospital, 77 Sakju-ro, Chuncheon 24253, Republic of Korea Tel: +82-33-252-9970, Fax: +82-33-241-8063, E-mail: deepfoci@hallym.or.kr

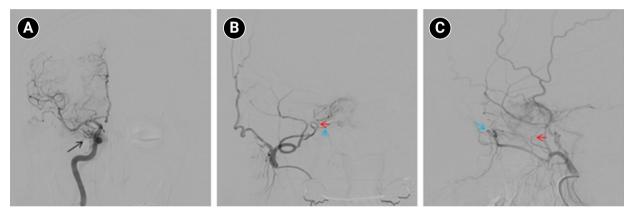
© 2025 The Korean Headache Society

®This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

(CN) III/IV/VI palsies; and headache.³ Anteriorly draining fistulas are more likely to produce ocular symptoms. By contrast, posteriorly draining fistulas may present with neurologic manifestations such as diplopia from ocular motor nerve palsy, confusion-particularly when cortical venous reflux is present. Involvement of the trigeminal nerve in patients with CCF is uncommon, and published data are limited compared with ocular motor findings.^{3,4} V3 involvement has been reported only sporadically, ^{4,5} and an initial presentation confined to V3 or V2/V3 has been only rarely described. Here, we report a case of CCF that initially presented with V2/V3 involvement and was mistaken for a dental disorder or trigeminal neuropathy. To our knowledge, this report describes an exceptionally rare indirect CCF presenting solely with isolated V2/V3-territory pain at onset, underscoring a diagnostic pitfall in which the lesion can mimic primary trigeminal or dental disease.


CASE REPORT

A 69-year-old woman with a medical history of bipolar disorder, not on any medications, presented with a 1-month history of severe right molar, adjacent gingival pain, and lower facial pain, accompanied by progressively worsening bifrontal headache. The headache was described as a crushing pain, rated 7-8/10 on the numeric rating scale (NRS), associated with nausea and vomiting. Each episode persisted for several hours and, without analgesics, could last throughout the day, with progressive day-to-day worsening over the preceding month. The pain was bifrontal, not clearly positional, and not worsened by Valsalva maneuvers or routine activity. No consistent aggravating or relieving factors were identified, and short-acting analgesics such as acetaminophen/isopropylantipyrine/caffeine combination provided only partial, transient relief. There was no history of photophobia, phonophobia, similar prior headaches, or identifiable triggers such as stress, upper respiratory tract infection, or head trauma. Cranial autonomic features were absent, and neither scalp tenderness nor jaw claudication was reported. The V2/V3-territory pain was predominantly constant and pressure-like, with brief, electric shock-like paroxysms lasting only seconds; during these paroxysms, peaking at 7-8/10 on the NRS. Classical trigeminal neuralgia triggers—chewing, talking, light facial contact, or cold exposure—were not identified.


The patient initially visited a dentist, where dental evaluation, including radiographic studies, revealed no abnormalities. As symptoms persisted and worsened, she presented to the emergency department. On initial assessment, there were no ocular signs (no proptosis or chemosis, no conjunctival arterialization, no orbital bruit), extraocular movements were full without diplopia, and the rest of the neurologic examination was unremarkable. Initial brain computed tomography (CT) and screening labs were normal. Given the normal dental evaluation, unremarkable screening labs and brain CT, and a presentation dominated by facial/V2-V3 pain without objective neuro-ophthalmic findings, the emergency department established a working diagnosis of trigeminal neuropathy and prioritized symptomatic care with short-interval follow-up; advanced neurovascular imaging was deferred until localizing red flags emerged. A brief therapeutic trial of carbamazepine 200 mg twice daily was initiated, which provided only transient, partial relief, with subsequent pain recurrence.

One week before admission, she developed new-onset binocular diplopia. On red-glass testing (red lens over the right eye), the patient exhibited horizontal, uncrossed diplopia with the red image to the right of the white image, worsening on right gaze and at distance, consistent with right abducens (CN VI) palsy. Additionally, the patient continued to experience persistent V2–V3 area pain and aggravated bifrontal headache.

Baseline hematology and chemistry-including complete blood count, electrolytes, renal/hepatic indices and coagulation tests (prothrombin time/international normalized ratio, activated partial thromboplastin time) were within reference limits. Erythrocyte sedimentation rate and C-reactive protein were normal. A focused screen for secondary trigeminal neuropathy (thyroid-stimulating hormone, vitamin B12, HbA1c) was negative. There were no clinical signs of infection. Brain magnetic resonance imaging (MRI) demonstrated high flow related signal in the right cavernous sinus and asymmetric dilation of the superior ophthalmic veins (right>left), raising suspicion for a CCF (Figure 1). Definitive diagnosis was established on digital subtraction angiography (DSA), which identified a right CCF. DSA demonstrated an indirect CCF supplied by the right meningohypophyseal trunk of the ICA and by right ECA branches, including the internal maxillary

Figure 1. Brain magnetic resonance imaging (MRI) findings. (A, B) Non-contrast time-of-flight magnetic resonance angiography shows a high flow-related signal (red arrows) within the right cavernous sinus. (C) Contrast-enhanced T1-weighted MRI demonstrates asymmetric dilation of the superior ophthalmic veins (blue arrow), more prominent on the right.

Figure 2. Digital subtraction angiography findings in the patient. (A) Right internal carotid artery (ICA) angiogram shows an indirect carotid-cavernous fistula supplied by the meningohypophyseal trunk of the cavernous ICA (black arrow). (B, C) Right external carotid artery angiogram demonstrates additional arterial supply from external carotid branches, including the internal maxillary artery (blue arrows) and the cavernous branch of the middle meningeal artery (red arrows).

artery and the cavernous branch of the middle meningeal artery, consistent with Barrow type D (Figure 2).⁶ Barrow type D denotes an indirect, low-flow fistula with dual ICA/ECA dural supply; unlike direct type, indirect types present more insidiously, and symptom patterns are largely determined by venous drainage, with posterior drainage often manifesting as CN VI palsy and headache (Table 1).^{1,3,6,7} The fistula was treated with transvenous Onyx embolization. On post-procedure day 1, non-contrast time-of-flight magnetic resonance angiography (TOF-MRA) demonstrated a marked reduction of flow related hyperintensity within the

right cavernous sinus, and the right superior ophthalmic vein caliber decreased from 6.63 to 4.61 mm (Figure 3A, B). Follow-up DSA (at 3 weeks) likewise showed substantial attenuation of fistulous opacification (Figure 3C), supporting a significant interval decrease in arteriovenous shunting. At 1–2 weeks, the patient reported an ~80%–90% reduction in dental/lower-facial pain and bifrontal headache from NRS 7–8 to 1–2. By 1 month, red-glass testing demonstrated resolution of primary-position diplopia. Formal prism measurements were unavailable; bedside ocular-motor grading was recorded using a standard duction underaction scale

Table 1. Barrow classification of carotid-cavernous fistula 1,3,6,7

Barrow type	Definition (angio-architecture)	Typical flow/Etiology	Clinical course/Severity
A (direct)	Direct fistulous connection between cavernous ICA and cavernous sinus	High-flow; usually traumatic ICA tear	Acute/abrupt onset; more severe overall
B (indirect)	Dural meningeal branches of the ICA → cavernous sinus	Low-flow; spontaneous	Insidious/gradual course; less severe overall
C (indirect)	Dural meningeal branches of the ECA → cavernous sinus	Low-flow; spontaneous	Insidious/gradual course; less severe overall
D (indirect)	Dural meningeal branches of both ICA and ECA → cavernous sinus	Low-flow; spontaneous	Insidious/gradual course; less severe overall

Clinical manifestations are primarily determined by flow and venous outflow pattern: anterior drainage typically produces ocular/orbital congestion, whereas posterior drainage is more often associated with neurologic complications and headache. High flow fistula tends to present more acutely with more pronounced orbital signs than low flow fistula.³

ICA, internal carotid artery; ECA, external carotid artery.

(-4 to 0). Right abduction improved from -1 to 0, and primary-position diplopia was absent at distance and near, consistent with recovery from abducens palsy.

DISCUSSION

Trigeminal involvement in CCF is generally uncommon, with most patients presenting primarily with ocular signs and CN III/IV/VI palsies. When trigeminal involvement dose occur, it most often localizes to the V1 or V2 divisions and is accompanied by ocular congestion or ocular motor cranial neuropathies-features more characteristic of cavernous-sinus pathology such as CCF, or other secondary entities (e.g., secondary trigeminal autonomic cephalalgias), than of isolated primary trigeminal disease. ^{4,5,8,9} A rare instance of V3 involvement has been reported, but it is usually accompanied by additional cranial neuropathies.⁵ An initial presentation confined to the V2/V3 divisions with subsequent misdiagnosis has been only rarely described in the published literature. Although the symptomatic distribution overlapped with ours (V2/V3-territory pain), Rizzo et al.4 reported an indirect, predominantly external-carotid CCF with V2/V3 pain plus hypoesthesia and vascular clues (pulsatile tinnitus/cranial bruit)—features that already pointed to a secondary vascular cause. By contrast, our patient initially had V2/V3-only pain without ocular congestion, bruit, or other cranial neuropathies, which led to initial misattribution to dental disease/trigeminal neuropathy. In Rizzo's era, diagnosis relied on selective angiography (no MRI and no standardized follow-up imaging) and treatment was surgical ligation; in our case, TOF-MRA demonstrated characteristic findings; DSA confirmed an indirect CCF. Transvenous Onyx embolization yielded temporally concordant imaging and clinical improvement. In Jensen et al. 5's Case 1, the patient likewise reported V2/V3-territory symptoms, but—unlike our case—there were early ocular congestive signs (lid swelling, conjunctival chemosis) and abnormal ocular ductions of the left eye documented at presentation. These accompanying neuro-ophthalmic findings would more readily cue clinicians to a cavernous-sinus process, whereas our patient's initial V2/V3-only pain without ocular signs contributed to early misattribution to dental disease/trigeminal neuropathy.

According to prior literature, posteriorly directed, high-pressure venous drainage in indirect CCFs can precipitate venous congestion around Meckel's cave, providing a substrate for V2/V3 territory pain; this builds on earlier evidence implicating vascular compromise at the trigeminal (Gasserian) ganglion level.^{4,5} In our case, the post-procedure reduction in TOF-MRA flow related signal, along with decreased superior ophthalmic vein engorgement, indicates reduced cavernous venous pressure, plausibly relieving congestion around Meckel's cave and thereby improving V2/V3 pain. The bifrontal, pressure-like headache with nausea/vomiting can be explained by posteriorly directed venous outflow from the fistula, which produces venous hypertension in the cavernous sinus and posterior dural venous pathways. 1,3,7 Resultant venous engorgement distends pain-sensitive dura and activates trigeminal meningeal afferents, yielding a secondary dural headache rather than a primary migraine phenotype; the bifrontal topography is compatible with referral from the anterior cranial fossa/cavernous region dura via the ophthalmic and maxillary divisions. 1,7 In line with this mecha-

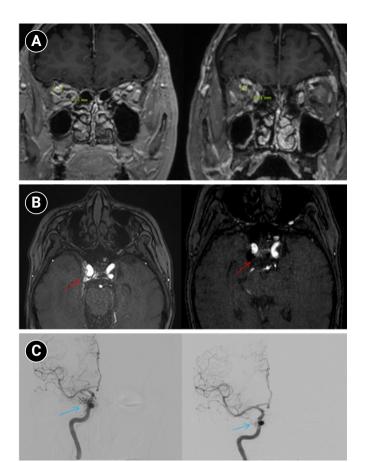


Figure 3. Imaging changes before and after embolization. (A) Brain magnetic resonance imaging (coronal section through the orbits) shows a decrease in the diameter of the right superior ophthalmic vein from 6.63 mm pre-embolization to 4.61 mm post-embolization, indicating reduced venous congestion. (B) Axial time-of-flight magnetic resonance angiography demonstrates that flow-related hyperintensity within the right cavernous sinus is markedly reduced after embolization (red arrows), consistent with decreased shunt flow. (C) Digital subtraction angiography images before embolization show abnormal early pericavernous venous filling along the right cavernous sinus region (blue arrows), compatible with carotid-cavernous shunting. On follow-up, this abnormal filling is no longer visualized, consistent with interval reduction in shunt flow.

nism, headache occurs more often in indirect CCF than in direct CCF, reflecting posterior venous drainage and dural venous hypertension. Correspondingly, headache improvement tracked with the post-embolization decrease in shunt on TOF-MRA, supporting a venous-driven mechanism linked to posterior drainage. Likewise, abducens palsy—given the nerve's central course through the cavernous sinus and vulnerability near Dorello's canal—would be

expected to improve as cavernous venous hypertension resolves, consistent with the observed normalization of right abduction on bedside duction grading.

In indirect CCFs as in our patient, endovascular therapy was selected as first-line; if endovascular access is not achievable or durable occlusion cannot be obtained, surgical management may be required. 2,3 Given the indirect (Barrow D) angio-architecture, a transvenous approach typically via the inferior petrosal sinus or, if inaccessible, the superior ophthalmic vein-was preferred, as transarterial embolization of dural feeders in indirect CCFs is associated with a higher embolic stroke risk.^{6,7} Transvenous embolization is commonly favored for indirect CCFs given the relatively straightforward venous anatomy, and high angiographic occlusion rates have been reported. Overall, endovascular treatment across techniques and access routes yields clinical improvement in approximately 60%-95% of cases. 10 Post-embolization TOF-MRA demonstrated a marked reduction of flow related signal in the right cavernous sinus with decreased superior ophthalmic vein engorgement, consistent with interval shunt reduction and accompanied by ~80%-90% relief of dental/facial pain and improvement in diplopia. As shunt flow decreased, the V2/ V3 territory pain improved in parallel, supporting the fistula as the proximate source of the pain.

In patients who present with severe pain localized to a molar and the adjacent gingiva, initial evaluation should prioritize exclusion of dental pathology and primary trigeminal neuralgia. However, when dental assessment is unrevealing and the pain exhibits atypical features—poor localization within the V2/V3 territory, non-paroxysmal quality, improvement only with short-acting analgesics, and a relapsing course—clinicians should maintain vigilance for evolving neuro-ophthalmic signs (e.g., new horizontal diplopia suggestive of abducens nerve palsy). Our case underscores that, under these circumstances, an atypical CCF presentation should be considered in the differential, and early neurovascular imaging (MRA/computed tomography angiography with confirmatory DSA when indicated) may prevent delayed diagnosis and treatment.

AVAILABILITY OF DATA AND MATERIAL

The data presented in this study are available upon reasonable request from the corresponding author.

AUTHOR CONTRIBUTIONS

Conceptualization: BC, SHK; Data curation: BC; Investigation: BC, CK, SHK; Methodology: BC, CK, SHK, JHS; Supervision: JHS; Validation: BC; Visualization: BC; Writingoriginal draft: BC; Writingoriew & editing: CK, SHK, JHS.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

FUNDING STATEMENT

Not applicable.

ACKNOWLEDGMENTS

Not applicable.

REFERENCES

- 1. Henderson AD, Miller NR. Carotid-cavernous fistula: current concepts in aetiology, investigation, and management. Eye (Lond) 2018;32:164-172.
- 2. Al-Shalchy A, Al-Wassiti AS, Hashim MA, et al. Neuro-ophthalmic manifestations of carotid cavernous fistulas: a systematic

- review and meta-analysis. Cureus 2024;16:e65821.
- **3.** Ellis JA, Goldstein H, Connolly ES Jr, Meyers PM. Carotid-cavernous fistulas. Neurosurg Focus 2012;32:E9.
- Rizzo M, Bosch EP, Gross CE. Trigeminal sensory neuropathy due to dural external carotid cavernous sinus fistula. Neurology 1982;32:89-91.
- Jensen RW, Chuman H, Trobe JD, Deveikis JP. Facial and trigeminal neuropathies in cavernous sinus fistulas. J Neuroophthalmol 2004:24:34-38.
- Barrow DL, Spector RH, Braun IF, Landman JA, Tindall SC, Tindall GT. Classification and treatment of spontaneous carotid-cavernous sinus fistulas. J Neurosurg 1985;62:248-256.
- Williams ZR. Carotid-cavernous fistulae: a review of clinical presentation, therapeutic options, and visual prognosis. Int Ophthalmol Clin 2018;58:271-294.
- 8. George JS, Adams W, Sadler M, Weatherby SJ, Ellis P. A case of 'cryptogenic' type D carotid cavernous fistula presenting initially with cluster-like headache. Clin Neurol Neurosurg 2013:115:1144-1146.
- **9.** Kim M, Yu JK, Kim YH. Update on cluster headaches: from genetic to novel therapeutic approaches. Headache Pain Res 2024;25:42-53.
- 10. Nurimanov C, Mammadinova I, Menlibayeva K, et al. Endovascular management of carotid-cavernous fistulas: a 16-year retrospective analysis of multimodal treatment strategies and long-term clinical outcomes. Front Neurol 2025;16:1625899.

Headache Pain Res 2025;26(3):232 pISSN: 3022-9057 • eISSN: 3022-4764 https://doi.org/10.62087/hpr.2024.0031.e1

Erratum to "Premonitory Symptoms in Migraine: Implications for Disease Burden and Cognitive Impairment, with Some Promising Answers"

Utku Topbaş¹, Bahar Taşdelen², Nevra Öksüz Gürlen¹, Aynur Özge¹

This is a correction to an already published paper (Headache Pain Res 2025;26(2):130-141; https://doi.org/10.62087/hpr.2024.0031). We found errors in the IQR values in Tables 1 and 3. Appropriately adjusted are as below.

Table 1. Comparison of demographic features between the PS+ and PS- groups

ana i o Bioapo			
Parameter	PS+ (n=139)	PS- (n=47)	p-value [†]
Mean age (yr)	35.1±10.4	36.9±11.3	0.397
Female sex	117 (84.2)	42 (89.4)	0.477
Chronic migraine	28 (20.1)	10 (21.3)	0.837
Migraine with aura	51 (36.7)	8 (17.0)	0.017*
MMD (IQR)	5 (3-10)	6 (3-10)	0.889
VAS (IQR)	8 (7-9)	8 (7-10)	0.498
Oral preventatives: small molecule	73 (52.5)	16 (34.0)	0.042*
Onabotulinumtoxin-A	18 (12.9)	1 (2.1)	0.048*
GON blockage	27 (19.4)	11 (23.4)	0.677

Values are presented as mean±standard deviation, number (%), or median (IQR).

PS+, premonitory symptom positive; PS-, premonitory symptom negative; MMD, monthly migraine days; IQR, interquartile range; VAS, visual analogue score; GON, greater occipital nerve.

*Asterisk indicates a statistically significant (p<0.05). †For parameters given as either mean±standard deviation or median (IQR), the Mann-Whitney U-test was used to obtain p-values. For parameters given as frequency, the chi-square test was used to obtain p-values.

Table 3. Comparison of the PS+ and PS- groups in terms of migraine trigger factors

	PS+ (n=139)	PS- (n=47)	p-value [†]
MIDAS (IQR)	26 (14-40)	16 (10-33.5)	0.05
Mig-SCOG (IQR)	10 (7-14)	7 (4-10)	<0.001*
EUROHIS-8 (IQR)	3.12 (2.75-3.62)	3.62 (3.12-4.00)	<0.001*

Values are presented as or median (IQR).

PS+, premonitory symptom positive; PS-, premonitory symptom negative; MIDAS, Migraine Disability Assessment Scale; IQR, interquartile range; Mig-SCOG, Migraine Attack Related Subjective Cognitive Scale; EUROHIS-8, European Health Impact Scale.

*Asterisk indicates a statistically significant (p<0.05). † For parameters with IQR values, the significance between groups was tested with the Mann-Whitney U-test.

This error does not change the text and the conclusions of our paper. We apologize for the unintentional mistake and appreciate the opportunity to correct and clarify the issue.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

Correspondence: Aynur Özge, M.D.

Department of Neurology, Mersin University School of Medicine, Çiftlikköy Mah., MEÜ Çiftlikköy Kampüsü, 33110 Yenişehir/Mersin, Turkey Tel: +90-324-2410000 (1902), Fax: +90-3242410000-1907, E-mail: aozge@mersin.edu.tr

®This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Department of Neurology, Mersin University School of Medicine, Mersin, Turkey

²Department of Biostatistics, Mersin University School of Medicine, Mersin, Turkey

^{© 2025} The Korean Headache Society

Instructions for authors

CONTACT INFORMATION

Headache and Pain Research Editorial Office

68 Hangeulbiseok-ro, Nowon-gu, Seoul 01830, Republic of Ko-

Tel: +82-2-974-8606, Fax: +82-2-974-7785

E-mail: office@e-hpr.org

Editor-in-Chief: Soo-Jin Cho, M.D., Ph.D.

Department of Neurology, Dongtan Sacred Heart Hospital,

Hallym University College of Medicine

Tel: +82-31-8086-2310, Fax: +82-31-8086-2317

E-mail: kheadache2014@gmail.com

GENERAL INFORMATION

Headache and Pain Research is the official Open Access Journal of Korean Headache Society. The journal published articles are freely and permanently accessible online immediately upon publication, without any subscription charges or registration barriers. The journal reports on basic and clinical investigations related to migraine, cluster headache, tension-type headache, intracranial hypotension, intracranial hypertension, reversible cerebral vasoconstriction syndrome, and other primary or secondary headache disorders. It also covers pediatric headache, temporomadibular disorder and orofaical pain, as well as headache and pain-related dizziness, psychological and cognitive problems, epidemiology, and big data. It publishes original articles, review articles, clinical trials, case reports, perspectives, letters to the editor, and editorials.

Headache and Pain Research follows Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals (https://www.icmje.org/icmje-recommendations.pdf) from the International Committee of Medical Journal Editors (ICMJE) if not otherwise described below. Authors will be asked to confirm their compliance with the journal's policies and guidelines during manuscript submission on the web page, and each author will be asked to

submit a signed "Authorship Responsibility, Conflicts of Interest, and Copyright Transfer/Publishing Agreement" (available at Instructions & Forms at https://e-hpr.org/authors/authors. php) prior to acceptance of their manuscript.

PUBLICATION AND RESEARCH ETHICS

The journal adheres to the ethical guidelines for research and publication described in the Guidelines on Good Publication (https://publicationethics.org/guidance/Guidelines) and the Good Publication Practice Guidelines for Medical Journals (https://www.kamje.or.kr/board/view?b_name = bo_publication&bo_id = 13).

Statement of Human and Animal Rights and Informed Consent

Any investigations involving humans and animals should be approved by the Institutional Review Board and Institutional Animal Care and Use Committee, respectively, of the institution where the study took place. Headache and Pain Research will not consider any studies involving humans or animals without the appropriate approval. Informed consent should be obtained, unless waived by the institutional review board, from patients who participated in clinical investigations. Human subjects should not be identifiable, such that patients' names, initials, hospital numbers, dates of birth, or other protected healthcare information should not be disclosed. If experiments involve animals, the research should be based on national or institutional guidelines for animal care and use. Headache and Pain Research can request an approval by the institutional review board or institutional animal care and use committee for the other types of articles when necessary. The content of each article is the responsibility of the authors and not of Headache and Pain Research.

Authorship and Author's Responsibility

The corresponding author takes primary responsibility for communication with the journal during the manuscript submission, peer review, and publication process, and typically ensures that all the journal's administrative requirements, such as providing details of authorship, ethics committee approval, clinical trial registration documentation, and gathering conflict of interest forms and statements, are properly completed, although these duties may be delegated to one or more coauthors. The corresponding author should be available throughout the submission and peer review process to respond to editorial queries in a timely way, and should be available after publication to respond to critiques of the work and cooperate with any requests from the journal for data or additional information should questions about the paper arise after publication. Authors are responsible for the whole content of each article. Co-authorship should be based on the following 4 criteria:

- Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND
- Drafting the work or revising it critically for important intellectual content; AND
- Final approval of the version to be published; AND
- Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

If any persons who do not meet above 4 criteria, they may be listed as contributors in Acknowledgments section. There is no limit to the number of authors, and in principle, only one author should contact the editorial board. In the case of multi-center or multi-disciplinary research, up to two corresponding authors are allowed. *Headache and Pain Research* does not allow adding authors or changing the first or the corresponding authors once its decision of 'Accept as it is' is made. If any author wishes to be removed from the byline, he or she should submit a letter signed by the author, as well as all other authors, indicating his or her wish to be deleted from the list of authors. Any change in the name order in the byline requires a letter signed by all authors indicting agreement with the same.

Conflict of Interest

The authors should disclose all potential conflicts of interest including any research funding, other financial support, and material support for the work. The corresponding author must inform the editor of any potential conflicts of interest that could influence the authors' interpretation of the data. If there is a disclosure, the editors, reviewers, and reader can

approach the manuscripts after understanding the situation.

Originality and Duplicate Publication

Manuscripts under review or published by other journals will not be accepted for publication in *Headache and Pain Research*, and articles published in this journal are not allowed to be reproduced in whole or in part in any type of publication without permission of the Editorial Board. Figures and tables can be used freely if original source is verified according to Creative Commons Non-Commercial License. It is mandatory for all authors to resolve any copyright issues when citing a figure or table from a different journal that is not open access. Regarding duplicate publication, plagiarism, and other problems related to publication ethics, "Good Publication Practice Guidelines for Medical Journals" (https://www.kamje.or.kr/board/view?b_name = bo_publication&bo_id = 7) should be followed.

Secondary Publication

It is possible to republish manuscripts if the manuscripts satisfy the conditions of acceptable secondary publication of the Recommendations by ICMJE (https://www.icmje.org/recommendations/browse/publishing-and-editorial-issues/overlapping-publications.html#three) as followings: Certain types of articles, such as guidelines produced by governmental agencies and professional organizations, may need to reach the widest possible audience. In such instances, editors sometimes deliberately publish material that is also being published in other journals, with the agreement of the authors and the editors of those journals. Secondary publication for various other reasons, in the same or another language, especially in other countries, is justifiable and can be beneficial provided that the following conditions are met. (1) The authors have received approval from the editors of both journals (the editor concerned with secondary publication must have access to the primary version). (2) The priority of the primary publication is respected by a publication interval negotiated by both editors with the authors. (3) The paper for secondary publication is intended for a different group of readers; an abbreviated version could be sufficient. (4) The secondary version faithfully reflects the authors, data, and interpretations of the primary version. (5) The secondary version informs readers, peers, and documenting agencies that the paper has been published in whole or in part elsewhere—for example, with a note that might read, "This article is based on a study first reported in the [journal title, with full reference]"—and the secondary version cites the primary reference. (6) The title of the secondary publication should indicate that it is a secondary publication (complete or abridged republication or translation) of a primary publication.

Process to Manage the Research and Publication Misconduct

When the Journal faces suspected cases of research and publication misconduct such as redundant (duplicate) publication, plagiarism, fraudulent or fabricated data, changes in authorship, undisclosed conflict of interest, ethical problem with a submitted manuscript, a reviewer who has appropriated an author's idea or data, complaints against editors, and etc., The resolving process will be followed by flowchart provided by the COPE (https://publicationethics.org/guidance/Flowcharts). The discussion and decision on the suspected cases are done by Editorial Board.

Registration of Clinical Trial Research

Any research that deals with a clinical trial should be registered with a primary national clinical trial registration site such as Korea Clinical Research Information Service (CRiS, https://cris.nih.go.kr), other primary national registry sites accredited by World Health Organization (https://www.who.int/clinical-trials-registry-platform/network/primary-registries) or ClinicalTrial.gov (https://clinicaltrials.gov), a service of the US National Institutes of Health.

Data Sharing Statement

Headache and Pain Research accepts the ICMJE Recommendations for data sharing statement policy (https://icmje.org/icmje-recommendations.pdf). Authors may refer to the editorial, "Data Sharing statements for Clinical Trials: A Requirement of the International Committee of Medical Journal Editors," in JKMS vol. 32, no. 7:1051-1053 (https://doi.org/10.3346/jkms.2017.32.7.1051).

Use of generative Al-assisted technologies

• Permitted Use of Generative AI

Authors may use generative AI tools (e.g., ChatGPT, Gemini, Claude) during manuscript preparation only for limited purposes, provided that such use is transparently disclosed and the authors fully verify the outputs. Permitted uses include:

- Language polishing, grammar correction, and sentence restructuring.
- Literature summarization or assistance in drafting general background sections.
- Code syntax suggestions (e.g., R or Python formatting), but not for performing actual statistical analyses or drawing inferences.
- * Use of generative AI tools to conduct statistical analysis, produce statistical results, or assist in data interpretation is strictly prohibited due to concerns about reproducibility, reliability, and the risk of fabricated outputs (hallucinations).

• Prohibited Use of Generative AI

Authors are strictly prohibited from:

- Generating original scientific content, results, tables, or data interpretation using AI tools.
- Using AI for statistical modeling, inferential analysis, or drawing conclusions from data.
- Listing AI tools as an author or co-author under any circumstances.
- Including unverifiable or AI-fabricated citations, references, or findings.

• Required Disclosure

Any use of generative AI tools must be clearly described in the manuscript, preferably in the "Methods," "Acknowledgments," or "Author Contributions" section. The disclosure must include:

- The name and version of the AI tool used (e.g., ChatGPT-4, Claude 3.5).
- The purpose and scope of use (e.g., English grammar correction, code suggestion).
- The date of AI use.
- A statement confirming that the authors have independently reviewed and verified all AI-generated content.

Example disclosure:

"This manuscript was prepared with the assistance of ChatGPT-4 (OpenAI), used on June 15, 2025, for grammar and language refinement. All content generated with AI assistance was independently verified by the authors."

• Authorship and Accountability

AI tools cannot be credited as authors.

All listed authors are responsible for the accuracy, integrity, and originality of the submitted manuscript, including any content generated with AI assistance.

The use of AI does not exempt authors from ethical, scientific, or legal responsibility.

• Use of AI in Peer Review

Reviewers may use AI tools to assist in summarizing manuscripts, but must not rely on them for forming scientific judgments or final recommendations.

If AI tools are used, reviewers must disclose the use and describe the scope briefly in their review comments.

• Ethics and Transparency

Any misuse of AI tools that results in fabricated, manipulated, or misleading scientific content will be considered a serious breach of publication ethics.

Undisclosed use of AI tools may lead to manuscript rejection, retraction, or a ban on future submissions.

• Policy Review and Updates

This policy will be reviewed and revised periodically to reflect advances in generative AI technology and publication ethics.

Editorial Responsibilities

Editorial board will continuously work for monitoring/safe-guarding publication ethics: guidelines for retracting articles; maintenance of the integrity of the academic record; preclusion of business needs from compromising intellectual and ethical standard; publishing corrections, clarifications, retractions and apologies when needed; no plagiarism, no fraudulent data. Editors are always keeping following responsibilities: responsibility and authority to rejected/accept article; no conflict of interest respect to articles they reject/accept; acceptance of a paper when reasonably certain; promoting publication of correction or retraction when errors are found; preservation of anonymity of reviewers.

COPYRIGHTS, OPEN ACCESS, OPEN DATA, ARCHIVING, AND DEPOSIT POLICY

Copyrights

The manuscript, when published, will become the property of the journal. Copyrights of all published materials are owned by the Korean Headache Society. All authors must sign the Transfer of Copyright Agreement when they submit their manuscript. Copyright transfer agreement form (https://e-hpr.org/authors/copyright_transfer_agreement.php).

Open Access Policy

Headache and Pain Research is an Open Access journal distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Author(s) do not need to be permitted for use of tables or figures published in Headache and Pain Research in other journals, books, or media for scholarly and educational purposes. This is in accordance with the Budapest Open Access Initiative definition of open access. It also follows the open access policy of PubMed Central at the United States National Library of Medicine (NLM) (https://www.ncbi.nlm.nih.gov/pmc/).

Open data policy

For clarification on result accuracy and reproducibility of the results, raw data or analysis data will be deposited to a public repository or *Headache and Pain Research* homepage after acceptance of the manuscript. If the data is already a public one, its URL site or sources should be disclosed. The data will not be made publicly available; if it is made available by special request to the corresponding author, this will be stated.

Archiving Policy

According to the deposit policy (self-archiving policy) of Sherpa/Romeo (https://www.sherpa.ac.uk), authors can archive preprint (i.e., pre-refereeing) or postprint (i.e., final draft post-refereeing). Authors can archive publisher's version/PDF.

GUIDELINES FOR MANUSCRIPT FORMATTING

1. General Guidelines

- The manuscript must be written in English.
- The manuscript should be organized in a single file, which starts with the title page, abstract and keywords, introduction, materials and methods, results, discussion, acknowledgments, statements on conflicts of interest, references, tables, and figure legends.
- The manuscript should use an 11- or 12-point font size and be double spaced on 21.0 cm \times 29.7 cm (A4) paper with 3.0 cm margins at the top, bottom, and left margin. Left-aligned text should be used.
- The authors should not number the pages or the lines. The page and line numbers will automatically be generated

when the uploaded manuscript is converted to PDF format.

- Use only standard abbreviations; use of nonstandard abbreviations can be confusing to readers. Avoid abbreviations in the title of the manuscript. The spelled-out abbreviation followed by the abbreviation in parentheses should be used on first mention.
- When quoting from other sources, give a reference number after the author's name or at the end of the quotation.
- Authors should express all measurements in conventional units, using the International System (SI) of units.
 - Biological names of organisms: *Saccharomyces cerevisiae, E. coli*
- Restriction enzymes and some enzymes: EcoRI, Taq polymerase
- Names of genes: Src, C-H-ras, Myc
- Latin words: in vivo, in vitro, in situ
- Centrifugation force: $100,000 \times g$
- The names of the manufacturers of equipment and generic names should be given.
- For specific study designs, such as randomized control studies, studies of diagnostic accuracy, meta-analyses, observational studies, and nonrandomized studies, authors are encouraged to also consult the reporting guidelines relevant to their specific research design. A good source of reporting guidelines is the EQUATOR Network (https://www.equator-network.org) and the NLM (https://www.nlm.nih.gov/services/research_report_guide.html).

Headache and Pain Research recommends compliance with some or all of the following guidelines.

- CONSORT for reporting of randomized controlled trials (http://www.consort-statement.org)
- STARD for reporting of diagnostic accuracy studies (http://www.stard-statement.org)
- STROBE for reporting of observational studies in epidemiology (http://www.strobe-statement.org)
- PRISMA for reporting of systematic reviews (http://www.prisma-statement.org)
- MOOSE for reporting of Meta-analyses of observational studies (https://jamanetwork.com/journals/jamasurgery/ article-abstract/2778476)
- CARE for reporting of clinical cases (https://www.care-statement.org)
- AGREE for reporting clinical practice guidelines (http://www.agreetrust.org/resource-centre/agree-reporting-checklist/)
- ARRIVE for reporting of animal pre-clinical studies (https://

- arriveguidelines.org/arrive-guidelines)
- Please also refer to the most recent articles published in *Headache and Pain Research* for style.

2. Main Document

• The main document should contain the following components in a single Microsoft Word file, each component starting on a separate page: title page, abstract, main body, acknowledgments/statements on conflicts of interest, references, and figure legends.

2.1. Title Page

- Include the following items on the title page:
 - Title
 - Names, affiliations, and addresses of all authors
 - Contact information of the corresponding author
 - Type of manuscript
- Each author's full name, not initials, must be provided in the order of first name, middle name (if it exists), and last name for all participating authors, e.g., John (first name) Doe (last name).
- When authors from different institutions/addresses are included, the authors should be matched with their organizations by placing the relevant organization number in superscript after each author's name.
- The contact information of the corresponding author should include the mailing address and e-mail address.
- ORCID: Open researcher and contributor ID (ORCID) of all authors are recommended to be provided. To have ORCID, authors should register in the ORCID web site available from: https://orcid.org. Registration is free to every researcher in the world.

2.2. Abstract

- Reference citations should not be used in the abstract. Abbreviations should be minimized and, if used, must be defined within the abstract by the full term followed by its abbreviation in parentheses.
- The abstract should be concise, less than 250 words, and describe the subject of research concisely, in a paragraph. The abstract for an original article must be structured to include a Purpose, Methods, Results, and Conclusion as follows:

Purpose: In one or two sentences, the specific purpose of the article and why it is worthy of attention should be indicated. The purpose stated here should be identical to the one given in the title of the paper and the introduction.

Methods: The methods used to achieve the purpose explained in the first paragraph should be described succinctly, stating what was done and how bias was controlled, what data were collected, and how the data were analyzed.

Results: The findings of the methods described in the preceding paragraph are to be presented here, with specific data. All results should flow logically from the methods described.

Conclusion: In one or two sentences, the conclusion of the study should be stated. This should relate directly to the purpose of the paper, as defined in the first paragraph of the abstract.

- Unlike that for an Original Article, the abstract for review/ case report consist of a single paragraph without separate sections. The most recently published articles should be consulted for style.
- Three to five keywords (index terms) should appear after the abstract. For the selection of keywords, refer to the list of Medical Subject Headings (MeSH, https://www.ncbi.nlm. nih.gov/mesh).

2.3. Main Body

2.3.1. Original Article

Original articles are papers containing results of basic and clinical investigations, which are sufficiently well documented to be acceptable to critical readers. The maximum length of a manuscript is 5,000 words (exclusive of the title page and abstract), 50 references (if the references exceed 50, authors can consult with the Editorial Office). A total of 8 figures or tables are allowed; additional tables and figures may be provided using the online data supplement system.

Introduction

 The introduction provides the research background and specific purpose or objectives, generally enough to inform the readers of the topic, and relevant findings of others are described. The hypothesis tested can be stated. The references should be as few and pertinent as possible.

Materials and Methods

 The first paragraph should address whether the study was conducted under an approval by the Institutional Review Board (with or without patient informed consent) and Institutional Animal Care and Use Committee of the institution

- where the study took place for any investigation involving humans and animals, respectively.
- The materials (or subjects), inclusion and exclusion criteria, research plan, and the methods used should all be described.
- Ensure correct use of the terms sex (when reporting biological factors) and gender (identity, psychosocial or cultural factors), and, unless inappropriate, report the sex and/or gender of study participants, the sex of animals or cells, and describe the methods used to determine sex and gender. If the study was done involving an exclusive population, for example in only one sex, authors should justify why, except in obvious cases (e.g., prostate cancer). Authors should define how they determined race or ethnicity and justify their relevance.
- How the disease was confirmed and how subjectivity in observations was controlled should be explained in detail, if relevant.
- When experimental methodology is the main issue of the paper, the experimental process should be described in detail so as to make it possible for the reader to recreate the experiment as closely as possible.
- The methods of statistical analysis and criteria for statistical significance should be described.
- If the study includes reuse/overlap of materials previously published or under consideration for publication elsewhere, the reuse/overlap of study materials should be clearly stated.
- The results of the paper should be described logically according to the Methods section.
- Tables and figures are recommended when they can present data more succinctly and clearly. Do not duplicate the content of tables or figures in the Results section.
- Briefly describe the core results related to the conclusion in the text when data are provided in tables or in figures.
- In the Results section, audio or video files are also welcomed. Supplementary results can be placed in the Appendix.

Discussion

- In the first part of the discussion, the main findings should be briefly summarized, then possible explanations for these findings should be explored, and these results should be compared and contrasted with the findings of other relevant studies.
- The results of previous relevant studies should not be men-

- tioned repeatedly, but any concordance or discordance should be noted.
- The core findings and the conclusions derived from them should be emphasized according to the best available evidence.
- In the last part of the discussion, the limitations of the study, future research suggestions or plans, and the conclusion should all be described. If there was a research hypothesis in the introduction section, whether it was supported should be stated.

Conflict of Interest

 State any potential conflict of interest that could influence the authors' interpretation of the data, such as financial support from or connections to pharmaceutical companies, political pressure from interest groups, or academically related issues.

Acknowledgments and Author Contribution

- All persons who have made substantial contributions but have not met the criteria for author- ship are acknowledged here. All sources of funding applicable to the study should be explicitly stated here.
- What authors have done for the study should be described in this section. To qualify for authorship, all contributors must meet at least one of the seven core contributions by CRediT (conceptualization, methodology, software, validation, formal analysis, investigation, data curation), as well as at least one of the writing contributions (original draft preparation, review and editing). Contributions will be published with the final article, and they should accurately reflect contributions to the work. The submitting author is responsible for completing this information at submission, and it is expected that all authors will have reviewed, discussed, and agreed to their individual contributions ahead of this time.

References

- In the text, references should be cited using superscript Arabic numerals (e.g., ¹, ^{2,3}, ⁴⁻⁶) and numbered in the order cited.
- In the references section, the references should be numbered and listed in the order of their appearance in the text.
- List all authors when there are six or fewer; for seven or more, list only the first three and add "et al."
- If an article has been published online but has not yet been given an issue or pages, the digital object identifier (DOI)

- should be supplied.
- Journal titles should be abbreviated in the style used in Medline.
- Other types of references not described below should follow "Samples of Formatted References for Authors of Journal Articles" (https://www.nlm.nih.gov/bsd/uniform_requirements.html).
- Unpublished data should not be cited in the reference list, but parenthetically in the text, for example: (Smith DJ, personal communication), (Smith DJ, unpublished data).
- The style and punctuation for journal articles, books, or book chapters should follow the format illustrated in the following examples:

- Journal article

Na JH, Cho SJ, Moon JS, et al. Application and effectiveness of dietary therapy for pediatric migraine. *Headache Pain Res* 2023;1:14-19.

- Journal article published electronically ahead of print Mantegazza R, Wolfe GI, Muppidi S, et al. Post-intervention status in patients with refractory myasthenia gravis treated with eculizumab during REGAIN and its open-label extension. Neurology 2020 Nov 23 [Epub]. https://doi.org/10.1212/WNL.000000000011207

- Conference paper

Mark MH, Dickson DW, Schwarz KO, et al. Familial diffuse Lewy body disease. Presented at the 10th International Symposium on Parkinson's Disease; October 19, 1991.

- Forthcoming

Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in Arabidopsis. Proc Natl Acad Sci USA. Forthcomming 2002.

- Book

Murray PR, Rosenthal KS, Kobayashi GS, Pfaller MA. Medical microbiology, 4th ed. Mosby; 2002.

Gilstrap LC 3rd, Cunningham FG, VanDorsten JP, editors. Operative obstetrics, 2nd ed. McGraw-Hill; 2002.

Meltzer PS, Kallioniemi A, Trent JM. Chromosome Alterations in Human Solid Tumors. In: Vogelstein B, Kinzler KW, editors. The Genetic Basis of Human Cancer. McGraw-Hill; 2002. p. 93-113.

 Online book or Website
 Foley KM, Gelband H, editors. Improving palliative care for cancer [Internet]. National Academy Press; 2001 [cited 2002 Jul 9]. Available from: https://www.nap.edu/catalog/10149/improving-palliative-care-for-cancer

Tables

- The tables should start on a separate page. The tables should be numbered using Arabic numerals in the order in which they are cited in the text.
- The title of the table should be not sentences, but phrases or clauses, without periods.
- Footnotes should be indicated by *, \dagger , \dagger , \S , \parallel , \P , **, $\dagger \dagger$, $\dagger \dagger$, etc. Abbreviations should be defined in a footnote below each table.
- Written permission from the prior publisher should be obtained for the use of all previously published tables and copies of the permission letter should be submitted.
- The statistical significance of observed differences in the data should be indicated by the appropriate statistical analysis.

Figure Legends

- The figure legends should start on a separate page. Legends should be numbered in the order in which they are cited, using Arabic numerals.
- In case of the use of previously published figures, the original source must be revealed in the figure legend.

Figures

- Multiple figures mentioned in the text should be described as follows, e.g., Figures 1, 3.
- Labels/arrows should be of professional quality.
- All names and all other identifiers of the patient, authors, and authors' institutions should be removed from the figures.
- Color figures should be in RGB color mode and line drawings should be black on a white background.
- Written permission from the prior publisher should be obtained for the use of all previously published illustrations and copies of the permission letter should be submitted.

Video Clips

- Video clips can be submitted for placement on the journal website. All videos are subject to peer review and can be uploaded as supplementary materials.
- A video file submitted for consideration for publication

- should be in complete and final format and at as high a resolution as possible. Any editing of the video will be the responsibility of the author.
- Headache and Pain Research recommends Quicktime, AVI, MPEG, MP4, or RealMedia file formats of less than 5 minutes duration.
- A legend to accompany the video should be double-spaced in a separate file.
- All copyrights for video files after acceptance of the main article are automatically transferred to *Headache and Pain Research*.

Supplementary Data

• Supplementary data: If there are complementary materials that help the understanding of readers or if there is a large amount of data, these may be used as supplementary data. Supplementary data should be as concise as possible and must be related to the main conclusion of the paper. Supplementary data can include electronic files of high resolution images, background datasets, video materials, animations, and more. Supplementary data will be published online alongside the electronic version of the article. Video data files can be submitted in the same way as a figure or table by referring to the video or animation content. Since video and animation cannot be embedded in the print version, authors have to provide text for both the electronic and the print version for the portions of the article that refer to this content.

2.3.2. Review Article

- A review is generally published as a commissioned paper at the request of the editor(s).
- Review articles contain an Abstract, Introduction, Main text, and Summary (or Conclusion) followed by references, tables, and figure legends.
- A review article is a comprehensive scholarly review on a specific topic. It is not an exhibit of a series of cases.
- Neither new information nor personal opinions are to be included.
- An introduction that explains the scope of the paper is required, and headings should be used appropriately to separate and organize the text.
- Please send us a Presubmission Inquiry before writing a review article. All review articles undergo the same review process as other types of articles prior to acceptance. Reviews have no restrictions on word count or the number of figures and tables. However, authors should eliminate re-

dundancy, emphasize the central message, and provide only the data necessary to convey that message. The approximate length should be less than 5,000 words. There should be an unstructured abstract equal to or less than 250 words. References should not exceed 200 references.

• The most recent Review articles published in *Headache and Pain Research* should be consulted for further details on formatting.

2.3.3. Case Reports

• Case reports will be published only in exceptional circumstances, if they illustrate a rare occurrence of clinical importance. These manuscripts should be organized in the following sequence: title page, abstract and keywords, introduction, case report(s), discussion, acknowledgments, references, tables, figure legends, and figures. Case reports are limited to 2,000 words (excluding the abstract, references, tables, and legends), and references should not exceed 30. A maximum of 5 figures or tables are allowed.

2.3.4. Letter to the Editor

- Constructive criticism of a specific thesis published by *Headache and Pain Research* is welcome.
- Letters to the editor may be in response to a published article or a short, free-standing piece expressing an opinion. If the letters to the editor is in response to a published article, the Editor-in-Chief may choose to invite the article's authors to write a reply. No abstraction is required. The letter should be 1,000 words or less (excluding references and figure legends) with a maximum of 10 references. A maximum of 2 figures including tables is allowed.

2.3.5. Editorials

• Editorials are submitted or invited by the editor and should be commentaries on articles in the recent issues. Editorial topics could include active areas of research, fresh insights, and debates in all fields considered to be of interest to *Headache and Pain Research* readers. Editorials should not exceed 1,000 words, excluding references, tables, and figures. References should not exceed 10. A maximum of 3 figures including tables is allowed.

2.3.6. Perspective

 A perspective is a report of the authors' viewpoint on a specific subject of interest to our readers as a commissioned paper at the request of the editor(s).

• Little or no new original information is included, and there is limited literature analysis. A perspective is a report of the authors' viewpoint on a specific subject of interest to our readers as a commissioned paper at the request of the editor(s).

Table 1. Specification for publication types

-	-			
Type of article	Abstract (word)	Text (word) ^{a)}	Reference	Table & figure
Original article	Structured, 250	5,000	50	8
Review article	250	5,000	200	Not limited
Case report	250	2,000	30	5
Letter to the editor	Not required	1,000	10	2
Editorial	Not required	1,000	10	3
Perspective	Not required	1,500	10	3

^{a)}Excluding the title page, abstract, references, tables, and legends.

REVIEW PROCESS AND MANUSCRIPT DECISION

- The submitted manuscript will first be evaluated at the editorial office regarding the completeness of the submitted materials and their suitability to *Headache and Pain Research*. Modifications/corrections may be requested from the authors at this stage before starting the peer review.
- Submitted manuscripts will generally be reviewed by the editors, as well as two peer reviewers who are experts in the submitted subject matter and the peer reviewers will make suggestions to the editor(s).
- Authors may suggest preferred and non-preferred reviewers during manuscript submission. However, the ultimate selection of the reviewers will be determined by the editor(s).
- The authors can monitor the progress of the manuscript throughout the review process at the submission site (https://submit.e-hpr.org).
- Submitted manuscripts will be rendered one of the following decisions:

Accept: The manuscript is accepted for publication.

Minor Revisions: A revision needs to be submitted within the due date. Otherwise, the manuscript will be treated as a new submission.

Major Revisions: A revision needs to be submitted within the due date. Otherwise, the manuscript will be treated as a new submission. Reject, Resubmission allowed: The authors are allowed to resubmit their work. However, it is effective only when they are able to respond to the various reviewer comments and make substantial changes to the study. The resubmitted manuscript will be treated as a new submission.

Reject, No further consideration: The paper will no longer be considered for publication.

- The decision to accept a manuscript is not based solely on the scientific validity and originality of the study content; other factors are considered, including the extent and importance of new information in the paper as compared with that in other papers being considered, the Journal's need to represent a wide range of topics, and the overall suitability for *Headache and Pain Research*.
- Decision letters usually, but not always, convey all factors considered for a particular decision. Occasionally, the comments to the authors may appear to be inconsistent with the editorial decision, which takes into consideration reviewers' comments to the editor, as well as the additional factors listed above.
- If the author(s) believe that the journal has rejected their article in error, perhaps because the reviewers have misunderstood its scientific content, an appeal may be submitted by e-mail to the editorial office (office@e-hpr.org). However, appeals are ineffective in most cases and are discouraged.

ELECTRONIC SUBMISSION OF MANUSCRIPT

Online Submission

- All manuscripts should be submitted online via the journal's website (https://submit.e-hpr.org) by the corresponding author. Once you have logged into your account, the on-line system will lead you through the submission process in a step-by-step orderly process. Submission instructions are available at the website. All articles submitted to the journal must comply with these instructions. Failure to do so will result in the return of the manuscript and, possibly, in delayed publication.
- Author's checklist: You will be first requested to confirm the Author's Checklist. Before submitting the new manuscript, please ensure every point listed in the Author's Check-list has been addressed.
- Document forms: Before you log into the online submission

system, it is helpful to prepare the following documents as you will be asked to upload them during the electronic submission process.

- Author statement forms
- Cover letter: A Cover Letter must indicate the address, telephone and fax numbers, and E-mail address of the corresponding author. The cover letter accompanying the manuscript must specify the type of manuscript and include statements on ethical issues and conflicts of interest, and complete contact information for the corresponding author. The cover letter should include the following statement: "All authors have read and approved the submitted manuscript, the manuscript has not been submitted elsewhere nor published elsewhere in whole or in part, except as an abstract (if relevant)."
- English proof-reading (non-obligatory): Although it is not an obligatory demand, authors may show that their manuscript has been edited through English proofreading

Submission of Revised Manuscript

- Revision should be submitted within the due date of the decision. Otherwise, the manuscript will be treated as a new submission.
- Please carefully read and follow the instructions written here and those included in the manuscript decision e-mail.
- To start the submission of a revised manuscript, log in at https://submit.e-hpr.org. Click the "Manuscripts in Revision" queue in the "My Manuscripts" area. Then, find the submission you wish to start the revision process for and click on the "Create Revision" link for that manuscript.
- To continue with a revised manuscript that has yet to be submitted, click on the "Revised Manuscripts in Draft" queue in the "My Manuscripts" area. Find the submission you wish to continue with and then click on the "Continue Submission" button.
- Please submit a point-by-point response to the editor/reviewer comments by directly pasting it in the box provided in "View and Response to Decision Letter" page as well as by uploading the same as a Microsoft Word document file (DOC/DOCX) on the "File Upload" page
- Any changes in the authorship should be reported to the editor in the cover letter.
- For file uploading, if you have updated a file, please delete the original version and upload the revised file. To designate the order in which your files appear, use the dropdowns in

the "order" column on the "File Upload" page.

• For a revision, we require two copies of the Main Document. Each should be a Microsoft Word document. The FIRST COPY should represent the final "clean" copy of the manuscript. The SECOND "annotated" COPY should have changes tracked using the track changes function in Microsoft Word with marginal memos indicating changes (e.g., E-1 indicates a response to comment #1 of the Editor; R2-3 indicates a response to comment #3 of Reviewer #2).

MANUSCRIPTS ACCEPTED FOR PUBLICATION

Final Version

After a paper has been accepted for publication, the names and affiliations of authors should be double-checked, and if the originally submitted image files were of poor resolution, higher resolution image files should be submitted at this time. Symbols (e.g., circles, triangles, squares), letters (e.g., words, abbreviations), and numbers should be large enough to be legible on reduction to the journal's column widths. All symbols must be defined in the figure caption. If references, tables, or figures are moved, added, or deleted during the revision process, renumber them to reflect such changes so that all tables, references, and figures are cited in numeric order.

Manuscript Corrections

Before publication, the manuscript editor will correct the manuscript such that it meets the standard publication format. The author(s) must respond within 48 hours when the manuscript editor contacts the author for revisions. If the response is delayed, the manuscript's publication may be postponed to the next issue.

Proofs

The corresponding author will receive page proofs for final checking, which should be corrected and returned within 48 hours. The authors must carefully check proofs to see that all errors are corrected and queries from editors answered. Keep a copy for your records.

Errata and Corrigenda

To correct errors in published articles, the corresponding author should contact the journal's Editorial Office with a detailed description of the proposed correction. Corrections that profoundly affect the interpretation or conclusions of the article will be reviewed by the editors. Corrections will be published as corrigenda (corrections of author's errors) or errata (corrections of publisher's errors) in a later issue of the journal.

ARTICLE-PROCESSING CHARGE

There are no author submission fees or other publication-related charges. All cost for the publication process is supported by the Publisher. Korean Headache Society is a so-called platinum open access journal which does not charge author fees.

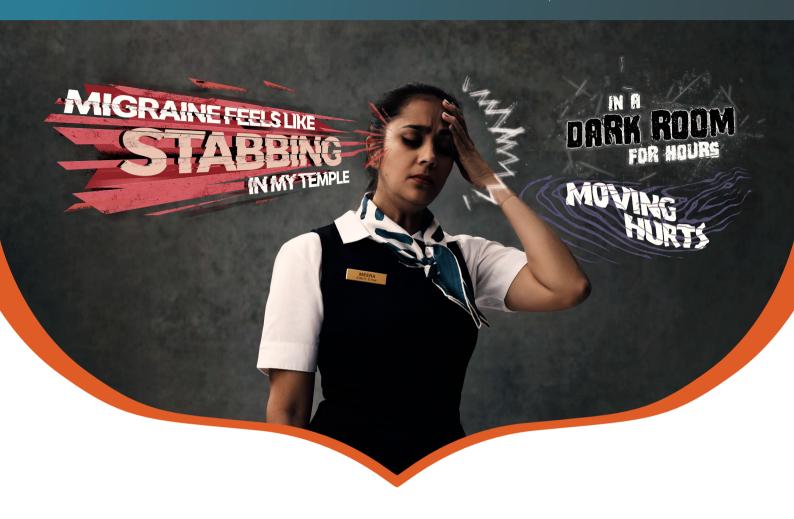
Author Checklist

☐ Submit manuscripts as DOC or DOCX files. Double space all parts of the manuscript.
\square The structured abstract should be no more than 250 words, and the abstract of the original article should be organizied as
follows: Purpose, Methods, Results, and Conclusion.
$\cite{Complex} Include\ institutional\ review\ board\ approval,\ informed\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ consent,\ and/or\ animal\ care\ committee\ approval\ for\ an\ original\ care\ committee\ approval\ care\ committee\ care\ committee\ care\ care$
article or case reports.
\square The tables and figures should start on a separate pages after references
\square Digital figures must be at least 600 dpi and a 9-18 cm in width and height. Use JPG/JPEG/TIF/TIFF.
\square Video clips should be less than 5 minutes duration for each.
\square References should be cited using superscript Arabic numerals (e.g., 1, 2,3, 4-6) and numbered in the order in which they
are cited.
\square For previously published materials, send written permission to reprint any figure or any other applicable permissions.
\square Please include the following components in the title pages ("not applicable" is a possible answer):
Abbreviations, Acknowledgements, Author contributions, Availability of data and material, Ethic approval and consent to
participate, Conflict of interest, Funding statement, and ORCID (all authors)
☐ Provide copies of any material for which there is overlap with your manuscript (see Originality and Duplicate Publication)

Copyright transfer agreement

Manuscript ti	tle:			
I hereby certify ments:	y that I agreed to submit the manusc	cript entitled as above to He	adache and Pain Research with the fo	llowing state-
 should not be All authors co This manusce mitted again Copyright of <i>Research</i>. It is source and co 	e directed to the The Korean Headac ontributed to this manuscript actual ript was not published or considered to other journals without permission this manuscript shall be transferred means that if any persons includin	che Society due to this many ly and intellectually and had for publication to any other in from Editor of <i>Headache</i> of the The Korean Headache gauthors want to use the ch purpose according to Creen	ve responsibility equally to this manuer scientific journals in the world. It wand Pain Research if it is accepted for join Society if it is published in Heada contents of this manuscript, they sheative Commons Attribution License.	script. ill not be sub- publication. eche and Pain
Conflict of Int	erest Disclosure Statement			
• -	tial conflicts of interests of this man ct the work reported in the article) o		ort or benefits have been received by eclared no conflict of interest."	the author(s)
	Name of the author(s)	Date	Signature	

수마트립탄'+나프록센나트륨


하나로 더 강력하게!23

국내 최초* 성인의 편두통 예방을 위한 CGRP (Calcitonin gene-related peptide) 수용체 길항제, 아큅타®1

PREVENT THE DISRUPTION OF MIGRAINE

삽화성 및 만성 편두통 예방을 위한 경구용 치료제 칼시토닌 유전자 관련 펩타이드(CGRP) 수용체 길항제, **아큅타** $^{\circ}$

가상의 환자 이미지이며, 삽입된 제형의 사이즈는 실제와 같지 않습니다.

*2023년 11월 기준 CGRP, calcitonin gene-related peptide References. 1. AQUIPTA® Product information (2023.11.15)

최신 전체 제품 정보는 QR Code 또는 제품설명서를 참조해주십시오. ※의약품 부작용 신고 및 피해구제 신청 : 한국의약품안전관리원 (1644-6223 또는 14-3330, www.drugsafe.or.kr) [수입·판매원] 한국애브비(주), 서울특별시 강남구 영동대로 421 삼탄빌딩 6층

MoA>

보톡스®는 신경에 작용하는 약물로, 신경 말단에 주사해서 통증성 **신경전달** 물질인 Substance P, Glutamate, CGRP 등의 분비를 막아 **만성 편두통을 예방합니다**. ¹

SAFETY

보톡스®는 **지난 30년간 다양한 연구와 임상 경험**을 축적했고*, 해당 적응증 국내 승인 이후(2011년) 10년간의 만성편두통 치료를 통해 **안전성과 내약성이 확인**되었<mark>습니다.³⁴</mark>

EFFICACY>

보톡스®를 12주 간격으로 3회 투여 시, 치료환자의 70% 이상에서 50%이상의 두통일수 감소를 보였습니다.²

(50%이상 두통일수 감소 환자비율(n=688): 1회 치료: 49.3%, 2회 치료: 60.6%, 3회 치료 70.9%)

FDA 승인시점 기준

Reference 1. Do TP, et al. Acta Neurol Scand. 2018;137:442-451. 2. Silberstein SD, et al. J Neurol Neurosurg Psychiatry. 2015;86(9):996-1001. 3. Aurora SK, et al. Headache. 2011;51(9):1358-1373. 4. 보톡스® 제품설명서(개정년월일 2024.02.08)

최신 전체 제품 정보는 QR Code 또는 제품설명서를 참조해주십시오. ※ 의약품 부작용 신고 및 피해구제 신청 : 한국의약품안전관리원 (1644-6223 또는 14-3330, www.drugsafe.or.kr) [제조원] Allergan Pharmaceuticals Ireland [수압·판매원] 한국에브비㈜, 서울특별시 강남구 영동대로 421 삼탄빌딩 6층, 전화: (02)-3429-9300 www.abbvie.co.kr

